A217262 Delta sequence for binary words in a minimal-change order (subset-lex Gray code).
0, 1, 2, 1, 0, 3, 0, 1, 2, 1, 0, 1, 4, 1, 0, 1, 2, 1, 0, 3, 0, 1, 2, 1, 0, 1, 2, 5, 2, 1, 0, 1, 2, 1, 0, 3, 0, 1, 2, 1, 0, 1, 4, 1, 0, 1, 2, 1, 0, 3, 0, 1, 2, 1, 0, 1, 2, 3, 6, 3, 2, 1, 0, 1, 2, 1, 0, 3, 0, 1, 2, 1, 0, 1, 4, 1, 0, 1, 2, 1, 0, 3, 0, 1, 2, 1, 0, 1, 2, 5, 2, 1, 0, 1, 2, 1, 0, 3, 0, 1, 2, 1, 0, 1, 4, 1, 0, 1, 2, 1, 0, 3, 0, 1, 2, 1, 0, 1, 2, 3, 4
Offset: 0
Keywords
Examples
Example for word length 5: no: word transition 00: ..... .1... 3 01: 1.... 1.... 4 02: 11... .1... 3 03: 111.. ..1.. 2 04: 1111. ...1. 1 05: 11111 ....1 0 <--= sequence starts 06: 111.1 ...1. 1 07: 11..1 ..1.. 2 08: 11.11 ...1. 1 09: 11.1. ....1 0 10: 1..1. .1... 3 11: 1..11 ....1 0 12: 1...1 ...1. 1 13: 1.1.1 ..1.. 2 14: 1.111 ...1. 1 15: 1.11. ....1 0 16: 1.1.. ...1. 1 17: ..1.. 1.... 4 18: ..11. ...1. 1 19: ..111 ....1 0 20: ..1.1 ...1. 1 21: ....1 ..1.. 2 22: ...11 ...1. 1 23: ...1. ....1 0 24: .1.1. .1... 3 25: .1.11 ....1 0 26: .1..1 ...1. 1 27: .11.1 ..1.. 2 28: .1111 ...1. 1 29: .111. ....1 0 30: .11.. ...1. 1 31: .1... ..1.. 2 Append first few words to obtain Gray code for word length 5: 00: ..... .1... 01: 1.... 1.... 02: 11... .1... 03: 111.. ..1.. 04: 1111. ...1.
Links
- Joerg Arndt, Table of n, a(n) for n = 0..4095
- Joerg Arndt, Matters Computational (The Fxtbook), section 20.3.2 "Adjacent changes (AC) Gray codes", p.400.
- Joerg Arndt, C++ code to compute this sequence.
- Joerg Arndt, Subset-lex: did we miss an order?, arXiv:1405.6503 [math.CO], (26-May-2014)
Extensions
Prepended a(0)=0, Joerg Arndt, Apr 29 2014
Comments