This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A217279 #15 Sep 11 2019 06:58:18 %S A217279 1157,1937,2117,2501,3601,4901,5777,7397,9217,10001,10817,12997,18497, %T A217279 20737,26897,34597,36101,37637,38417,45797,48401,51077,59537,60517, %U A217279 64517,70757,75077,81797,86437,87617,92417,99857,102401,104977,108901,111557,119717 %N A217279 Numbers of the form n^2 + 1 without prime divisors of the form a^2 + 1. %C A217279 The corresponding n are in A217276. %C A217279 a(n) == 1, 17, 37, 57, 77, 97 mod 100. %H A217279 Amiram Eldar, <a href="/A217279/b217279.txt">Table of n, a(n) for n = 1..10000</a> %e A217279 1157 is in the sequence because 1157 = 34^2 + 1 = 13*89 and the numbers 13, 89 are not of the form 1 plus a square. %p A217279 isA217279 := proc(n) %p A217279 if issqr(n-1) then %p A217279 for d in numtheory[factorset](n) do %p A217279 if issqr(d-1) then %p A217279 return false; %p A217279 end if; %p A217279 end do: %p A217279 return true ; %p A217279 else %p A217279 false; %p A217279 end if; %p A217279 end proc: %p A217279 for n from 1 to 300 do %p A217279 if isA217279(n^2+1) then %p A217279 printf("%d ",n^2+1) ; %p A217279 end if; %p A217279 end do: # _R. J. Mathar_, Oct 01 2012 %t A217279 Select[1 + Range[400]^2, Not[PrimeQ[#]] && Intersection[Divisors[#], 1 + Range[Sqrt[# - 1] - 1]^2] == {} &] (* _Alonso del Arte_, Sep 29 2012 *) %Y A217279 Cf. A002522, A005574, A217276, A181436, A180252. %K A217279 nonn %O A217279 1,1 %A A217279 _Michel Lagneau_, Sep 29 2012