A217293 Permutation of natural numbers arising from applying the walk of right triangular type-3 spiral (defined in A214252) to the data of square spiral (e.g. A214526).
1, 5, 6, 7, 8, 9, 10, 2, 4, 16, 36, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 51, 27, 11, 3, 15, 35, 63, 99, 64, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 83, 124, 84, 52, 28, 12, 14, 34, 62, 98, 142, 194, 143, 100, 65, 66, 67, 68, 69, 70, 71, 72
Offset: 1
Keywords
Programs
-
Python
SIZE = 29 # must be 4k+1 grid = [0] * (SIZE*SIZE) posX = posY = SIZE//2 grid[posY*SIZE+posX]=1 n = 2 def walk(stepX, stepY, chkX, chkY): global posX, posY, n while 1: posX+=stepX posY+=stepY grid[posY*SIZE+posX]=n n+=1 if grid[(posY+chkY)*SIZE+posX+chkX]==0: return while posX: walk(0, -1, 1, 0) # up walk(1, 0, 0, 1) # right walk(0, 1, -1, 0) # down walk(-1, 0, 0, -1) # left import sys grid2 = [0] * (SIZE*SIZE) posX = posY = SIZE//2 grid2[posY*SIZE+posX]=1 def walk2(stepX, stepY, chkX, chkY): global posX, posY while 1: a = grid[posY*SIZE+posX] if a==0: sys.exit(1) print(a, end=', ') posX+=stepX posY+=stepY grid2[posY*SIZE+posX]=1 if grid2[(posY+chkY)*SIZE+posX+chkX]==0: return while posY!=0: walk2( 1, 1, -1, 0) # right-down walk2(-1, 0, 0, -1) # left walk2(0, -1, 1, 1) # up