This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A217295 #8 Mar 12 2025 20:06:55 %S A217295 1,5,6,7,22,8,2,4,16,36,17,18,19,20,21,44,75,45,23,9,11,3,15,35,63,99, %T A217295 64,37,38,39,40,41,42,43,74,113,160,114,76,46,24,10,28,12,14,34,62,98, %U A217295 142,194,143,100,65,66,67,68,69,70,71,72,73,112,159,214,277 %N A217295 Permutation of natural numbers arising from applying the walk of triangular horizontal-last spiral (defined in A214226) to the data of square spiral (e.g. A214526). %o A217295 (Python) %o A217295 SIZE = 29 # must be 4k+1 %o A217295 grid = [0] * (SIZE*SIZE) %o A217295 posX = posY = SIZE//2 %o A217295 grid[posY*SIZE+posX]=1 %o A217295 n = 2 %o A217295 def walk(stepX, stepY, chkX, chkY): %o A217295 global posX, posY, n %o A217295 while 1: %o A217295 posX+=stepX %o A217295 posY+=stepY %o A217295 grid[posY*SIZE+posX]=n %o A217295 n+=1 %o A217295 if grid[(posY+chkY)*SIZE+posX+chkX]==0: %o A217295 return %o A217295 while posX: %o A217295 walk(0, -1, 1, 0) # up %o A217295 walk(1, 0, 0, 1) # right %o A217295 walk(0, 1, -1, 0) # down %o A217295 walk(-1, 0, 0, -1) # left %o A217295 import sys %o A217295 grid2 = [0] * (SIZE*SIZE) %o A217295 posX = posY = SIZE//2 %o A217295 grid2[posY*SIZE+posX]=1 %o A217295 def walk2(stepX, stepY, chkX, chkY): %o A217295 global posX, posY %o A217295 while 1: %o A217295 a = grid[posY*SIZE+posX] %o A217295 if a==0: %o A217295 sys.exit(1) %o A217295 print(a, end=', ') %o A217295 posX+=stepX %o A217295 posY+=stepY %o A217295 grid2[posY*SIZE+posX]=1 %o A217295 if grid2[(posY+chkY)*SIZE+posX+chkX]==0: %o A217295 return %o A217295 while 1: %o A217295 walk2(1, 1, -1, 0) # down-right %o A217295 walk2(-1, 0, 1, -1) # left %o A217295 walk2(-1, 0, 1, -1) # left %o A217295 if posX<2: %o A217295 break %o A217295 walk2(1, -1, 1, 1) # up-right %Y A217295 Cf. A214226, A214526, A217014. %K A217295 nonn %O A217295 1,2 %A A217295 _Alex Ratushnyak_, Sep 30 2012