This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A217298 #42 Aug 05 2021 12:26:14 %S A217298 1,1,2,1,4,6,4,1,16,32,44,60,70,56,128,28,448,8,864,1,1552,2720,4288, %T A217298 6312,9004,11992,4096,14372,22528,15400,67584,14630,159744,11968, %U A217298 334080,8104,644992,4376,1195008,1820,2158912,560,3811904,120,6617184,16,11307904 %N A217298 Triangle read by columns: T(n,k) = number of AVL trees of height n with k (leaf-) nodes, k>=1, A029837(k)<=n<A072649(k). %D A217298 F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 239, Eq 79, A_5. %D A217298 D. E. Knuth, Art of Computer Programming, Vol. 3, Sect. 6.2.3 (7) and (8). %H A217298 Alois P. Heinz, <a href="/A217298/b217298.txt">Columns k = 1..1500, flattened</a> %H A217298 Ralf Hinze, <a href="https://www.cs.ox.ac.uk/ralf.hinze/publications/Brother12.pdf">Functional Pearls: Purely functional 1-2 brother trees</a>, Journal of Functional Programming, 19(6):633-644, 2009, DOI: <a href="http://dx.doi.org/10.1017/S0956796809007333">10.1017/S0956796809007333</a>. %H A217298 R. C. Richards, <a href="http://dx.doi.org/10.1016/0020-0190(83)90085-6">Shape distribution of height-balanced trees</a>, Info. Proc. Lett., 17 (1983), 17-20. %H A217298 Wikipedia, <a href="https://en.wikipedia.org/wiki/AVL_tree">AVL tree</a> %H A217298 <a href="/index/Ro#rooted">Index entries for sequences related to rooted trees</a> %e A217298 There are 2 AVL trees of height 2 with 3 (leaf-) nodes: %e A217298 o o %e A217298 / \ / \ %e A217298 o N N o %e A217298 / \ / \ %e A217298 N N N N %e A217298 Triangle begins: %e A217298 1 %e A217298 . 1 %e A217298 . . 2 1 %e A217298 . . . . 4 6 4 1 %e A217298 . . . . . . . 16 32 44 60 70 56 28 8 1 %e A217298 . . . . . . . . . . . . 128 448 864 1552 2720 ... %Y A217298 Triangle read by rows gives: A143897. %Y A217298 Row sums give: A029758. %Y A217298 Column sums give: A006265. %Y A217298 First elements of rows give: A174677. %Y A217298 First, last elements of columns give: A217299, A217300. %Y A217298 Row lengths give: 1+A008466(n). %Y A217298 Column heights give: A217710(k). %Y A217298 Cf. A029837, A072649. %K A217298 nonn,look,tabf %O A217298 1,3 %A A217298 _Alois P. Heinz_, Mar 17 2013