cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A217304 Minimal natural number (in decimal representation) with n prime substrings in base-4 representation (substrings with leading zeros are considered to be nonprime).

Original entry on oeis.org

1, 2, 7, 11, 23, 43, 93, 151, 239, 373, 479, 727, 1495, 2015, 2775, 5591, 6133, 7919, 12271, 22367, 24303, 30431, 48991, 89527, 95607, 98143, 129887, 357883, 358111, 382431, 744797, 519551, 1431007, 1432447, 1556319, 2457439
Offset: 0

Views

Author

Hieronymus Fischer, Nov 22 2012

Keywords

Comments

The sequence is well-defined in that for each n the set of numbers with n prime substrings is not empty. Proof: Define m(0):=1, m(1):=2 and m(n+1):=4*m(n)+2 for n>0. This results in m(n)=2*sum_{j=0..n-1} 4^j = 2*(4^n - 1)/3 or m(n)=1, 2, 22, 222, 2222, 22222, …,for n=0,1,2,3,…. Evidently, for n>0 m(n) has n 2’s and these are the only prime substrings in base-4 representation. This is why every substring of m(n) with more than one digit is a product of two integers > 1 (by definition) and can therefore not be prime number.
No term is divisible by 4. a(1) = 2 is the only even term.

Examples

			a(1) = 2 = 2_4, since 2 is the least number with 1 prime substring in base-4 representation.
a(2) = 7 = 13_4, since 7 is the least number with 2 prime substrings in base-4 representation (3_4=3 and 13_4=7).
a(3) = 11 = 23_4, since 11 is the least number with 3 prime substrings in base-4 representation (2_4, 3_4, and 23_4).
a(5) = 43 = 223_4, since 43 is the least number with 5 prime substrings in base-4 representation (2 times 2_4, 3_4, 23_4=11, and 223_4=43).
a(7) = 151 = 2113_4, since 151 is the least number with 7 prime substrings in base-4 representation (2 times 2_4, 3_4, 11_4=5, 13_4=7, 113_4=23, and 2113_4=151).
		

Crossrefs

Formula

a(n) > 4^floor(sqrt(8*n-7)-1)/2), for n>0.
a(n) <= 2*(4^n - 1)/3, n>0.
a(n+1) <= 4*a(n) + 2.