A217315 Square array T, read by antidiagonals: T(n,k) = 0 if n-k >= 1 or if k-n >= 8, T(0,k)= 1 if 0<=k<=7, T(n,k) = T(n-1,k) + T(n,k-1).
1, 1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 3, 2, 0, 0, 1, 4, 5, 0, 0, 0, 1, 5, 9, 5, 0, 0, 0, 1, 6, 14, 14, 0, 0, 0, 0, 0, 7, 20, 28, 14, 0, 0, 0, 0, 0, 7, 27, 48, 42, 0, 0, 0, 0, 0, 0, 0, 34, 75, 90, 42, 0, 0, 0, 0, 0, 0, 0, 34, 109, 165, 132, 0, 0, 0, 0, 0, 0, 0, 0, 0, 143, 274, 297, 132, 0, 0, 0, 0, 0, 0, 0, 0, 0, 143, 417, 571, 429, 0, 0, 0, 0, 0, 0, 0
Offset: 0
Examples
Square array begins: 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, ... row n=0 0, 1, 2, 3, 4, 5, 6, 7, 7, 0, 0, 0, 0, 0, 0, ... row n=1 0, 0, 2, 5, 9, 14, 20, 27, 34, 34, 0, 0, 0, ... row n=2 0, 0, 0, 5, 14, 28, 48, 75, 109, 143, 143, 0, 0, ... row n=3 0, 0, 0, 0, 14, 42, 90, 165, 274, 417, 560, 560, 0, ... row n=4 0, 0, 0, 0, 0, 42, 132, 297, 571, 988, 1548, 2108, 2108, 0, ... row n=5 ...
Programs
-
Mathematica
t[0, k_ /; k <= 7] = 1; t[n_, k_] /; k < n || k > n+7 = 0; t[n_, k_] := t[n, k] = t[n-1, k] + t[n, k-1]; Table[t[n-k, k], {n, 0, 13}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Mar 18 2013 *)
Comments