This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A217323 #22 Oct 27 2021 09:27:05 %S A217323 1,3,11,31,92,253,709,1936,5336,14587,40119,110202,304137,840597, %T A217323 2332469,6487762,18106906,50667263,142194843,400057791,1128408337, %U A217323 3190023641,9038202201,25659417876,72987714502,207983161609,593665226069,1697230353691,4859461136196 %N A217323 Number of self-inverse permutations in S_n with longest increasing subsequence of length 3. %C A217323 Also the number of Young tableaux with n cells and 3 rows. %H A217323 Alois P. Heinz, <a href="/A217323/b217323.txt">Table of n, a(n) for n = 3..1000</a> %F A217323 a(n) = A182172(n,3) - A182172(n,2) = A001006(n) - A001405(n). %e A217323 a(3) = 1: 123. %e A217323 a(4) = 3: 1243, 1324, 2134. %e A217323 a(5) = 11: 12543, 13254, 14325, 14523, 15342, 21354, 21435, 32145, 34125, 42315, 52341. %p A217323 a:= proc(n) option remember; `if`(n<3, 0, `if`(n=3, 1, %p A217323 ((n+1)*(6*n^3-5*n^2-7*n-24)*a(n-1) %p A217323 +n*(n-1)*(21*n^2-28*n-109)*a(n-2) %p A217323 -2*(n-1)*(n-2)*(12*n^2+11*n-3)*a(n-3) %p A217323 -12*(3*n+5)*(n-1)*(n-2)*(n-3)*a(n-4))/ %p A217323 ((n-3)*(3*n+2)*(n+2)*(n+1)))) %p A217323 end: %p A217323 seq(a(n), n=3..40); %t A217323 MotzkinNumber = DifferenceRoot[Function[{y, n}, {(-3n-3)*y[n] + (-2n-5)*y[n+1] + (n+4)*y[n+2] == 0, y[0] == 1, y[1] == 1}]]; %t A217323 a[n_] := MotzkinNumber[n] - Binomial[n, Quotient[n, 2]]; %t A217323 Table[a[n], {n, 3, 40}] (* _Jean-François Alcover_, Oct 27 2021, from 2nd formula *) %Y A217323 Column k=3 of A047884. %Y A217323 Cf. A001006, A001405, A182172. %K A217323 nonn,easy %O A217323 3,2 %A A217323 _Alois P. Heinz_, Sep 30 2012