cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A217358 Series reversion of x-x^3-x^4.

Original entry on oeis.org

1, 0, 1, 1, 3, 7, 16, 45, 110, 308, 819, 2275, 6328, 17748, 50388, 143412, 411939, 1187329, 3441559, 10015005, 29255655, 85766655, 252201690, 743819115, 2199446652, 6519727800, 19369551936, 57665571072, 172011364452, 514021640564, 1538650042952
Offset: 1

Views

Author

R. J. Mathar, Oct 01 2012

Keywords

Examples

			If y= x-x^3-x^4, then x= y + y^3 + y^4 +3*y^5 +7*y^6 +16*y^7 + ...
		

Crossrefs

Cf. A049140 (reversion of x-x^2-x^4).

Programs

  • Mathematica
    Rest[CoefficientList[InverseSeries[Series[x - x^3 - x^4, {x, 0, 20}], x], x]] (* Vaclav Kotesovec, Sep 10 2013 *)

Formula

Conjecture: 46*n*(n-1)*(n-2)*a(n) -(n-1)*(n-2)*(11*n-74)*a(n-1) -(n-2)*(336*n^2-1359*n+1351)*a(n-2) +(-347*n^3+2190*n^2-3861*n+1330)*a(n-3) + 8*(2*n-7)*(4*n-15)*(4*n-17)*a(n-4) = 0.
Recurrence (order 3): 23*(n-2)*(n-1)*n*(9*n-25)*a(n) = -(n-2)*(n-1)*(54*n^2 - 231*n + 248)*a(n-1) + (n-2)*(1485*n^3 - 10065*n^2 + 22292*n - 16088)*a(n-2) + 8*(2*n-5)*(4*n-13)*(4*n-11)*(9*n-16)*a(n-3). - Vaclav Kotesovec, Sep 10 2013
a(n) ~ c*d^n/n^(3/2), where d = 3/23*(2367+966*sqrt(3))^(1/3)+423/(23*(2367+966*sqrt(3))^(1/3))-2/23 = 3.145200906807902443... is the root of the equation -256 - 165*d + 6*d^2 + 23*d^3 = 0 and c = 1/48*sqrt(2)*sqrt((80793 + 65184*sqrt(3))^(1/3)*((80793 + 65184 * sqrt(3))^(2/3)-1839+9*(80793 + 65184 * sqrt(3))^(1/3)))/((80793 + 65184 * sqrt(3))^(1/3)*sqrt(Pi)) = 0.098446219937815765... - Vaclav Kotesovec, Sep 10 2013