This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A217359 #11 Mar 21 2022 06:26:35 %S A217359 1,0,-1,-1,3,7,-8,-45,0,264,273,-1365,-3192,5508,27132,-7752,-193743, %T A217359 -158631,1177209,2417415,-5673525,-23595585,14488110,187050435, %U A217359 104481780,-1251127512,-2178989008,6775504088,23824892148,-23395134188,-204487059656,-57418615353,1471227866951 %N A217359 Series reversion of x+x^3+x^4. %H A217359 R. J. Mathar, <a href="/A217359/b217359.txt">Table of n, a(n) for n = 1..104</a> %F A217359 D-finite with recurrence 124*n*(n-1)*(n-2)*a(n) +(n-1)*(n-2)*(7*n-88)*a(n-1) +(n-2)*(870*n^2-3465*n+3347)*a(n-2) +(1243*n^3-9870*n^2+25869*n-22490)*a(n-3) +8*(4*n-15)*(2*n-7)*(4*n-17)*a(n-4) = 0. %F A217359 Recurrence (order 3): 31*(n-2)*(n-1)*n*(15*n-41)*a(n) = (n-2)*(n-1)*(90*n^2 - 381*n + 400)*a(n-1) - (n-2)*(3285*n^3 - 22119*n^2 + 48706*n - 34960)*a(n-2) - 8*(2*n-5)*(4*n-13)*(4*n-11)*(15*n-26)*a(n-3). - _Vaclav Kotesovec_, Sep 10 2013 %F A217359 Lim sup n->infinity |a(n)|^(1/n) = 16/sqrt(31) = 2.8736848... - _Vaclav Kotesovec_, Sep 10 2013 %e A217359 If y= x+x^3+x^4, then x=y -y^3 -y^4 +3*y^5 +7*y^6 -8*y^7 -45*y^8 +... %t A217359 Rest[CoefficientList[InverseSeries[Series[x+x^3+x^4,{x,0,20}],x],x]] (* _Vaclav Kotesovec_, Sep 10 2013 *) %Y A217359 Cf. A217358 (x-x^3-x^4). %K A217359 sign,easy %O A217359 1,5 %A A217359 _R. J. Mathar_, Oct 01 2012