This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A217387 #11 Jan 27 2023 17:04:59 %S A217387 1523,3251,7529,9257,154747,165857,171467,174767,312509,322519,373669, %T A217387 747451,758561,764171,767471,905213,915223,966373,1000033,1020233, %U A217387 1077733,1078733,1083833,1099933,1165643,1173743,1175743 %N A217387 Emirps (A006567) whose difference with the reversal is a perfect cube. %C A217387 The differences are multiples of 1728. %H A217387 Antonio Roldán, <a href="/A217387/b217387.txt">Table of n, a(n) for n = 1 to 40</a> %e A217387 905213 is prime, 312509 is prime. 905213 - 312509 = 592704 = 84^3. %t A217387 Select[Prime[Range[100000]],!PalindromeQ[#]&&PrimeQ[IntegerReverse[#]] && IntegerQ[ CubeRoot[ Abs[#-IntegerReverse[#]]]]&] (* _Harvey P. Dale_, Jan 27 2023 *) %o A217387 (PARI) isinteger(n)=(n==truncate(n)) %o A217387 reverse(n)=eval(concat(Vecrev(Str(n)))) %o A217387 iscube(n)= { local(f,m,p=0); if(n==1,p=1, f=factor(n); m=gcd(f[, 2]); if(isinteger(m/3),p=1));return(p) } %o A217387 {for(i=2,10^7,p=reverse(i);if(isprime(i)&&isprime(p)&&iscube(abs(i-p)),print1(i," ")))} /* Antonio Roldán, Dec 19 2012 */ %K A217387 nonn,base %O A217387 1,1 %A A217387 _Antonio Roldán_, Oct 02 2012