This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A217388 #37 Aug 08 2025 09:09:19 %S A217388 1,0,3,10,65,476,4207,43086,502749,6584512,95663051,1526969522, %T A217388 26564598073,500293750308,10141049220135,220142141757718, %U A217388 5095512540223637,125275254488912264,3260259408767933059,89541327910560478074,2588146468333823725041 %N A217388 Alternating sums of the ordered Bell numbers (number of preferential arrangements) A000670. %H A217388 Vincenzo Librandi, <a href="/A217388/b217388.txt">Table of n, a(n) for n = 0..200</a> %H A217388 Mathematics Stack Exchange, <a href="https://math.stackexchange.com/a/5088679/929945">Simple closed form for signed partial sums of Fubini numbers</a>, Aug 8 2025. %F A217388 a(n) = sum((-1)^(n-k)*t(k), k=0..n), where t = A000670 (ordered Bell numbers). %F A217388 E.g.f.: 1/(2-exp(x))-exp(-x)*log(1/(2-exp(x))). [Typo corrected by _Vaclav Kotesovec_, Oct 08 2013] %F A217388 G.f.: 1/(1+x)/Q(0), where Q(k)= 1 - x*(k+1)/(1 - x*(2*k+2)/Q(k+1)); (continued fraction). - _Sergei N. Gladkovskii_, May 20 2013 %F A217388 a(n) ~ n! /(2*(log(2))^(n+1)). - _Vaclav Kotesovec_, Oct 08 2013 %F A217388 a(n) = Sum_{k=0..n} k!*Stirling2(n+2,k+2)*(2^(k+1)-1)*(-1)^(n-k). - _Mikhail Kurkov_, Aug 08 2025 %p A217388 with(combinat): %p A217388 seq(sum((-1)^(n-k)*sum(factorial(j)*stirling2(k,j), j=0..k), k=0..n), n=0..30); # _Muniru A Asiru_, Feb 07 2018 %t A217388 t[n_] := Sum[StirlingS2[n, k]k!, {k, 0, n}]; Table[Sum[(-1)^(n - k)t[k], {k, 0, n}], {n, 0, 100}] %t A217388 (* second program: *) %t A217388 Fubini[n_, r_] := Sum[k!*Sum[(-1)^(i+k+r)(i+r)^(n-r)/(i!*(k-i-r)!), {i, 0, k-r}], {k, r, n}]; Fubini[0, 1] = 1; a[n_] := Sum[(-1)^(n-k) Fubini[k, 1], {k, 0, n}]; Table[a[n], {n, 0, 20}] (* _Jean-François Alcover_, Mar 31 2016 *) %o A217388 (Maxima) %o A217388 t(n):=sum(stirling2(n,k)*k!,k,0,n); %o A217388 makelist(sum((-1)^(n-k)*t(k),k,0,n),n,0,40); %o A217388 (Magma) %o A217388 A000670:=func<n | &+[StirlingSecond(n,i)*Factorial(i): i in [0..n]]>; %o A217388 [&+[(-1)^(n-k)*A000670(k): k in [0..n]]: n in [0..20]]; // _Bruno Berselli_, Oct 03 2012 %o A217388 (PARI) for(n=0,30, print1(sum(k=0,n, (-1)^(n-k)*sum(j=0,k, j!*stirling(k,j,2))), ", ")) \\ _G. C. Greubel_, Feb 07 2018 %o A217388 (GAP) List([0..30],n->Sum([0..n],k->(-1)^(n-k)*Sum([0..k], j-> Factorial(j)*Stirling2(k,j)))); # _Muniru A Asiru_, Feb 07 2018 %o A217388 (PARI) a(n) = sum(k=0, n, k!*stirling(n+2,k+2,2)*(2^(k+1)-1)*(-1)^(n-k)) \\ _Mikhail Kurkov_, Aug 08 2025 %Y A217388 Cf. A000670, A006957, A005649, A217389, A217391, A217392. %K A217388 nonn %O A217388 0,3 %A A217388 _Emanuele Munarini_, Oct 02 2012