cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A217388 Alternating sums of the ordered Bell numbers (number of preferential arrangements) A000670.

This page as a plain text file.
%I A217388 #37 Aug 08 2025 09:09:19
%S A217388 1,0,3,10,65,476,4207,43086,502749,6584512,95663051,1526969522,
%T A217388 26564598073,500293750308,10141049220135,220142141757718,
%U A217388 5095512540223637,125275254488912264,3260259408767933059,89541327910560478074,2588146468333823725041
%N A217388 Alternating sums of the ordered Bell numbers (number of preferential arrangements) A000670.
%H A217388 Vincenzo Librandi, <a href="/A217388/b217388.txt">Table of n, a(n) for n = 0..200</a>
%H A217388 Mathematics Stack Exchange, <a href="https://math.stackexchange.com/a/5088679/929945">Simple closed form for signed partial sums of Fubini numbers</a>, Aug 8 2025.
%F A217388 a(n) = sum((-1)^(n-k)*t(k), k=0..n), where t = A000670 (ordered Bell numbers).
%F A217388 E.g.f.: 1/(2-exp(x))-exp(-x)*log(1/(2-exp(x))). [Typo corrected by _Vaclav Kotesovec_, Oct 08 2013]
%F A217388 G.f.: 1/(1+x)/Q(0), where Q(k)= 1 - x*(k+1)/(1 - x*(2*k+2)/Q(k+1)); (continued fraction). - _Sergei N. Gladkovskii_, May 20 2013
%F A217388 a(n) ~ n! /(2*(log(2))^(n+1)). - _Vaclav Kotesovec_, Oct 08 2013
%F A217388 a(n) = Sum_{k=0..n} k!*Stirling2(n+2,k+2)*(2^(k+1)-1)*(-1)^(n-k). - _Mikhail Kurkov_, Aug 08 2025
%p A217388 with(combinat):
%p A217388 seq(sum((-1)^(n-k)*sum(factorial(j)*stirling2(k,j), j=0..k), k=0..n), n=0..30); # _Muniru A Asiru_, Feb 07 2018
%t A217388 t[n_] := Sum[StirlingS2[n, k]k!, {k, 0, n}]; Table[Sum[(-1)^(n - k)t[k], {k, 0, n}], {n, 0, 100}]
%t A217388 (* second program: *)
%t A217388 Fubini[n_, r_] := Sum[k!*Sum[(-1)^(i+k+r)(i+r)^(n-r)/(i!*(k-i-r)!), {i, 0, k-r}], {k, r, n}]; Fubini[0, 1] = 1; a[n_] := Sum[(-1)^(n-k) Fubini[k, 1], {k, 0, n}]; Table[a[n], {n, 0, 20}] (* _Jean-François Alcover_, Mar 31 2016 *)
%o A217388 (Maxima)
%o A217388 t(n):=sum(stirling2(n,k)*k!,k,0,n);
%o A217388 makelist(sum((-1)^(n-k)*t(k),k,0,n),n,0,40);
%o A217388 (Magma)
%o A217388 A000670:=func<n | &+[StirlingSecond(n,i)*Factorial(i): i in [0..n]]>;
%o A217388 [&+[(-1)^(n-k)*A000670(k): k in [0..n]]: n in [0..20]]; // _Bruno Berselli_, Oct 03 2012
%o A217388 (PARI) for(n=0,30, print1(sum(k=0,n, (-1)^(n-k)*sum(j=0,k, j!*stirling(k,j,2))), ", ")) \\ _G. C. Greubel_, Feb 07 2018
%o A217388 (GAP) List([0..30],n->Sum([0..n],k->(-1)^(n-k)*Sum([0..k], j-> Factorial(j)*Stirling2(k,j)))); # _Muniru A Asiru_, Feb 07 2018
%o A217388 (PARI) a(n) = sum(k=0, n, k!*stirling(n+2,k+2,2)*(2^(k+1)-1)*(-1)^(n-k)) \\ _Mikhail Kurkov_, Aug 08 2025
%Y A217388 Cf. A000670, A006957, A005649, A217389, A217391, A217392.
%K A217388 nonn
%O A217388 0,3
%A A217388 _Emanuele Munarini_, Oct 02 2012