This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A217389 #39 Feb 20 2025 09:26:35 %S A217389 1,2,5,18,93,634,5317,52610,598445,7685706,109933269,1732565842, %T A217389 29824133437,556682481818,11198025452261,241481216430114, %U A217389 5557135898411469,135927902927547370,3521462566184392693,96323049885512803826,2774010846129897006941,83898835844633970888762 %N A217389 Partial sums of the ordered Bell numbers (number of preferential arrangements) A000670. %H A217389 Vincenzo Librandi, <a href="/A217389/b217389.txt">Table of n, a(n) for n = 0..200</a> %F A217389 a(n) = Sum_{k=0..n} t(k), where t = A000670 (ordered Bell numbers). %F A217389 G.f. = A(x)/(1-x), where A(x) = g.f. for A000670 (see that entry). - _N. J. A. Sloane_, Apr 12 2014 %F A217389 a(n) ~ n! / (2* (log(2))^(n+1)). - _Vaclav Kotesovec_, Nov 08 2014 %p A217389 b:= proc(n, k) option remember; %p A217389 `if`(n=0, k!, k*b(n-1, k)+b(n-1, k+1)) %p A217389 end: %p A217389 a:= proc(n) option remember; `if`(n<0, 0, a(n-1)+b(n, 0)) end: %p A217389 seq(a(n), n=0..23); # _Alois P. Heinz_, Feb 20 2025 %t A217389 t[n_] := Sum[StirlingS2[n, k]k!, {k, 0, n}]; Table[Sum[t[k], {k, 0, n}], {n, 0, 100}] %t A217389 (* second program: *) %t A217389 Fubini[n_, r_] := Sum[k!*Sum[(-1)^(i+k+r)(i+r)^(n-r)/(i!*(k-i-r)!), {i, 0, k-r}], {k, r, n}]; Fubini[0, 1] = 1; Table[Fubini[n, 1], {n, 0, 20}] // Accumulate (* _Jean-François Alcover_, Mar 31 2016 *) %o A217389 (Maxima) %o A217389 t(n):=sum(stirling2(n,k)*k!,k,0,n); %o A217389 makelist(sum(t(k),k,0,n),n,0,40); %o A217389 (Magma) %o A217389 A000670:=func<n | &+[StirlingSecond(n,i)*Factorial(i): i in [0..n]]>; %o A217389 [&+[A000670(k): k in [0..n]]: n in [0..19]]; // _Bruno Berselli_, Oct 03 2012 %o A217389 (PARI) for(n=0,30, print1(sum(k=0,n, sum(j=0,k, j!*stirling(k,j,2))), ", ")) \\ _G. C. Greubel_, Feb 07 2018 %Y A217389 Cf. A000670, A006957, A005649, A217388, A217391, A217392. %Y A217389 See A239914 for another version. %K A217389 nonn %O A217389 0,2 %A A217389 _Emanuele Munarini_, Oct 02 2012