cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A217389 Partial sums of the ordered Bell numbers (number of preferential arrangements) A000670.

This page as a plain text file.
%I A217389 #39 Feb 20 2025 09:26:35
%S A217389 1,2,5,18,93,634,5317,52610,598445,7685706,109933269,1732565842,
%T A217389 29824133437,556682481818,11198025452261,241481216430114,
%U A217389 5557135898411469,135927902927547370,3521462566184392693,96323049885512803826,2774010846129897006941,83898835844633970888762
%N A217389 Partial sums of the ordered Bell numbers (number of preferential arrangements) A000670.
%H A217389 Vincenzo Librandi, <a href="/A217389/b217389.txt">Table of n, a(n) for n = 0..200</a>
%F A217389 a(n) = Sum_{k=0..n} t(k), where t = A000670 (ordered Bell numbers).
%F A217389 G.f. = A(x)/(1-x), where A(x) = g.f. for A000670 (see that entry). - _N. J. A. Sloane_, Apr 12 2014
%F A217389 a(n) ~ n! / (2* (log(2))^(n+1)). - _Vaclav Kotesovec_, Nov 08 2014
%p A217389 b:= proc(n, k) option remember;
%p A217389      `if`(n=0, k!, k*b(n-1, k)+b(n-1, k+1))
%p A217389     end:
%p A217389 a:= proc(n) option remember; `if`(n<0, 0, a(n-1)+b(n, 0)) end:
%p A217389 seq(a(n), n=0..23);  # _Alois P. Heinz_, Feb 20 2025
%t A217389 t[n_] := Sum[StirlingS2[n, k]k!, {k, 0, n}]; Table[Sum[t[k], {k, 0, n}], {n, 0, 100}]
%t A217389 (* second program: *)
%t A217389 Fubini[n_, r_] := Sum[k!*Sum[(-1)^(i+k+r)(i+r)^(n-r)/(i!*(k-i-r)!), {i, 0, k-r}], {k, r, n}]; Fubini[0, 1] = 1; Table[Fubini[n, 1], {n, 0, 20}] // Accumulate (* _Jean-François Alcover_, Mar 31 2016 *)
%o A217389 (Maxima)
%o A217389 t(n):=sum(stirling2(n,k)*k!,k,0,n);
%o A217389 makelist(sum(t(k),k,0,n),n,0,40);
%o A217389 (Magma)
%o A217389 A000670:=func<n | &+[StirlingSecond(n,i)*Factorial(i): i in [0..n]]>;
%o A217389 [&+[A000670(k): k in [0..n]]: n in [0..19]]; // _Bruno Berselli_, Oct 03 2012
%o A217389 (PARI) for(n=0,30, print1(sum(k=0,n, sum(j=0,k, j!*stirling(k,j,2))), ", ")) \\ _G. C. Greubel_, Feb 07 2018
%Y A217389 Cf. A000670, A006957, A005649, A217388, A217391, A217392.
%Y A217389 See A239914 for another version.
%K A217389 nonn
%O A217389 0,2
%A A217389 _Emanuele Munarini_, Oct 02 2012