This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A217434 #14 Jun 29 2021 11:20:49 %S A217434 1,2,3,4,5,3,7,8,9,5,11,6,13,7,5,16,17,9,19,10,7,11,23,12,25,13,27,14, %T A217434 29,5,31,32,11,17,7,18,37,19,13,20,41,7,43,22,15,23,47,24,49,25,17,26, %U A217434 53,27,11,28,19,29,59,10,61,31,21,64,13,11,67,34,23,7,71 %N A217434 n divided by the product of all its prime divisors smaller than the largest prime divisor. %C A217434 If n = p_1^e_1 *p_2^e_2 *p_3^e_3 *...* p_m^e_m is the canonical prime factorization of n with e_1, e_2, e_3,.. >0 and p_1<p_2<p_3<...<p_m, then a(n) = p_1^(e_1-1) *p_2^(e_2-1) *... *p_m^e^m, where exponents of all prime factors are decremented by 1, with the exception of the exponent associated with the largest prime prime factor that stays intact. %C A217434 All prime powers (A000961) are fixed points. %H A217434 Michel Marcus, <a href="/A217434/b217434.txt">Table of n, a(n) for n = 1..10000</a> %F A217434 a(n) = n*A006530(n)/A007947(n). %e A217434 For n=24 = 2^3*3, the exponent 3 (associated with the smaller prime 2) is reduced to 2, so a(n)=2^2*3=12. %p A217434 A217434 := proc(n) %p A217434 local s,m,a,p ; %p A217434 s := numtheory[factorset](n) ; %p A217434 m := max(op(s)) ; %p A217434 a := n ; %p A217434 for p in s do %p A217434 if p < m then %p A217434 a := a/p ; %p A217434 end if; %p A217434 end do: %p A217434 a ; %p A217434 end proc: %p A217434 seq(A217434(n),n=1..100) ; %o A217434 (PARI) a(n) = my(f=factor(n)); for (k=1, #f~-1, f[k,2]--); factorback(f); \\ _Michel Marcus_, Jun 28 2021 %Y A217434 Used in A124833. %Y A217434 Cf. A000961, A006530, A007947. %K A217434 nonn,easy %O A217434 1,2 %A A217434 _R. J. Mathar_, Oct 02 2012 %E A217434 a(71) corrected by _Georg Fischer_, Jun 28 2021