cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A217476 Coefficient triangle for the square of the monic integer Chebyshev T-polynomials A127672.

This page as a plain text file.
%I A217476 #10 Sep 13 2016 00:22:48
%S A217476 4,0,1,4,-4,1,0,9,-6,1,4,-16,20,-8,1,0,25,-50,35,-10,1,4,-36,105,-112,
%T A217476 54,-12,1,0,49,-196,294,-210,77,-14,1,4,-64,336,-672,660,-352,104,-16,
%U A217476 1,0,81,-540,1386,-1782,1287,-546,135,-18,1,4,-100,825,-2640,4290,-4004,2275,-800,170,-20,1
%N A217476 Coefficient triangle for the square of the monic integer Chebyshev T-polynomials A127672.
%C A217476 The monic integer T-polynomials, called R(n,x) (in Abramowitz-Stegun C(n,x)), with their coefficient triangle given in A127672, when squared, become polynomials in y=x^2:
%C A217476   R(n,x)^2 = sum(T(n,k)*y^k,m=0..n).
%C A217476 R(n,x)^2 = 2 + R(2*n,x). From the bisection of the R-(or T-)polynomials, the even part. Directly from the R(m*n,x)=R(m,R(n,x)) property for m=2.
%C A217476 The o.g.f. is G(z,y) := sum((R(n,sqrt(y))^2)*z^n ,n=0..infinity) = (4 + (4 - 3*y)*z + y*z^2)/((1 +(2-y)*z + z^2)*(1-z)). From the bisection.
%C A217476 The o.g.f.s of the columns k>=1 are x^k*(1-x)/(1+x)^(2*k+1),
%C A217476 and for k=0 the o.g.f. is 4/(1-x^2).
%C A217476 Hetmaniok et al. (2015) refer to these as "modified Chebyshev" polynomials. - _N. J. A. Sloane_, Sep 13 2016
%D A217476 E Hetmaniok, P Lorenc, S Damian, et al., Periodic orbits of boundary logistic map and new kind of modified Chebyshev polynomials in R. Witula, D. Slota, W. Holubowski (eds.), Monograph on the Occasion of 100th Birthday Anniversary of Zygmunt Zahorski. Wydawnictwo Politechniki Slaskiej, Gliwice 2015, pp. 325-343.
%F A217476 T(n,k) = [x^(2*k)]R(n,x)^2, with R(n,x) the monic integer version of the Chebyshev T(n,x) polynomial.
%F A217476 T(n,k) = 0 if n<k, T(0,0) = 4, T(n,k) = 2*[k=0] + 2*n*(-1)^(n-k)*binomial(n+k,n-k)/(n+k), n>=1. ([k=0] means 1 if k=0 else 0).
%e A217476 The triangle begins:
%e A217476 n\k 0    1    2      3     4      5     6     7    8   9  10
%e A217476 0:  4
%e A217476 1:  0    1
%e A217476 2:  4   -4    1
%e A217476 3:  0    9   -6      1
%e A217476 4:  4  -16   20     -8     1
%e A217476 5:  0   25  -50     35   -10      1
%e A217476 6:  4  -36  105   -112    54    -12     1
%e A217476 7:  0   49 -196    294  -210     77   -14     1
%e A217476 8:  4  -64  336   -672   660   -352   104   -16    1
%e A217476 9:  0   81 -540   1386 -1782   1287  -546   135  -18   1
%e A217476 10: 4 -100  825  -2640  4290  -4004  2275  -800  170 -20   1
%e A217476 ...
%e A217476 n=2:  R(2,x) = -2 + y, R(2,x)^2 = 4 -4*y + y^2, with y=x^2.
%e A217476 n=3:  R(3,x) = 3*x - x^3, R(3,x)^2 = 9*y - 6*y^2 +y^3, with y=x^2.
%e A217476 T(4,1) = 8*(-1)^3*binomial(5,3)/5 = -16.
%e A217476 T(4,0) = 2 + 8*(-1)^4*binomial(4,4)/4 = 4.
%e A217476 T(n,1) = (-1)^(n-1)*2*n*(n+1)!/((n-1)!*2!*(n+1)) = -((-1)^n)*n^2 = A162395(n), n >= 1.
%e A217476 T(n,2) = (-1)^n*A002415(n), n >= 0.
%e A217476 T(n,3) = -(-1)^n*A040977(n-3), n >= 3.
%e A217476 T(n,4) = (-1)^n*A053347(n-4), n >= 4.
%e A217476 T(n,5) = -(-1)^n*A054334(n-5), n >= 5.
%Y A217476 Cf. A127672, A158454 (square of S-polynomials), A128495 (sum of square of S-polynomials).
%K A217476 sign,easy,tabl
%O A217476 0,1
%A A217476 _Wolfdieter Lang_, Oct 17 2012