This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A217476 #10 Sep 13 2016 00:22:48 %S A217476 4,0,1,4,-4,1,0,9,-6,1,4,-16,20,-8,1,0,25,-50,35,-10,1,4,-36,105,-112, %T A217476 54,-12,1,0,49,-196,294,-210,77,-14,1,4,-64,336,-672,660,-352,104,-16, %U A217476 1,0,81,-540,1386,-1782,1287,-546,135,-18,1,4,-100,825,-2640,4290,-4004,2275,-800,170,-20,1 %N A217476 Coefficient triangle for the square of the monic integer Chebyshev T-polynomials A127672. %C A217476 The monic integer T-polynomials, called R(n,x) (in Abramowitz-Stegun C(n,x)), with their coefficient triangle given in A127672, when squared, become polynomials in y=x^2: %C A217476 R(n,x)^2 = sum(T(n,k)*y^k,m=0..n). %C A217476 R(n,x)^2 = 2 + R(2*n,x). From the bisection of the R-(or T-)polynomials, the even part. Directly from the R(m*n,x)=R(m,R(n,x)) property for m=2. %C A217476 The o.g.f. is G(z,y) := sum((R(n,sqrt(y))^2)*z^n ,n=0..infinity) = (4 + (4 - 3*y)*z + y*z^2)/((1 +(2-y)*z + z^2)*(1-z)). From the bisection. %C A217476 The o.g.f.s of the columns k>=1 are x^k*(1-x)/(1+x)^(2*k+1), %C A217476 and for k=0 the o.g.f. is 4/(1-x^2). %C A217476 Hetmaniok et al. (2015) refer to these as "modified Chebyshev" polynomials. - _N. J. A. Sloane_, Sep 13 2016 %D A217476 E Hetmaniok, P Lorenc, S Damian, et al., Periodic orbits of boundary logistic map and new kind of modified Chebyshev polynomials in R. Witula, D. Slota, W. Holubowski (eds.), Monograph on the Occasion of 100th Birthday Anniversary of Zygmunt Zahorski. Wydawnictwo Politechniki Slaskiej, Gliwice 2015, pp. 325-343. %F A217476 T(n,k) = [x^(2*k)]R(n,x)^2, with R(n,x) the monic integer version of the Chebyshev T(n,x) polynomial. %F A217476 T(n,k) = 0 if n<k, T(0,0) = 4, T(n,k) = 2*[k=0] + 2*n*(-1)^(n-k)*binomial(n+k,n-k)/(n+k), n>=1. ([k=0] means 1 if k=0 else 0). %e A217476 The triangle begins: %e A217476 n\k 0 1 2 3 4 5 6 7 8 9 10 %e A217476 0: 4 %e A217476 1: 0 1 %e A217476 2: 4 -4 1 %e A217476 3: 0 9 -6 1 %e A217476 4: 4 -16 20 -8 1 %e A217476 5: 0 25 -50 35 -10 1 %e A217476 6: 4 -36 105 -112 54 -12 1 %e A217476 7: 0 49 -196 294 -210 77 -14 1 %e A217476 8: 4 -64 336 -672 660 -352 104 -16 1 %e A217476 9: 0 81 -540 1386 -1782 1287 -546 135 -18 1 %e A217476 10: 4 -100 825 -2640 4290 -4004 2275 -800 170 -20 1 %e A217476 ... %e A217476 n=2: R(2,x) = -2 + y, R(2,x)^2 = 4 -4*y + y^2, with y=x^2. %e A217476 n=3: R(3,x) = 3*x - x^3, R(3,x)^2 = 9*y - 6*y^2 +y^3, with y=x^2. %e A217476 T(4,1) = 8*(-1)^3*binomial(5,3)/5 = -16. %e A217476 T(4,0) = 2 + 8*(-1)^4*binomial(4,4)/4 = 4. %e A217476 T(n,1) = (-1)^(n-1)*2*n*(n+1)!/((n-1)!*2!*(n+1)) = -((-1)^n)*n^2 = A162395(n), n >= 1. %e A217476 T(n,2) = (-1)^n*A002415(n), n >= 0. %e A217476 T(n,3) = -(-1)^n*A040977(n-3), n >= 3. %e A217476 T(n,4) = (-1)^n*A053347(n-4), n >= 4. %e A217476 T(n,5) = -(-1)^n*A054334(n-5), n >= 5. %Y A217476 Cf. A127672, A158454 (square of S-polynomials), A128495 (sum of square of S-polynomials). %K A217476 sign,easy,tabl %O A217476 0,1 %A A217476 _Wolfdieter Lang_, Oct 17 2012