cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A217478 Triangle of coefficients of polynomials providing the second term of the numerator for the generating function for odd powers (2*m+1) of Chebyshev S-polynomials. The present polynomials are called P(m;1,x^2).

This page as a plain text file.
%I A217478 #14 Jun 16 2016 23:27:52
%S A217478 -2,3,-4,-4,10,-6,5,-20,21,-8,-6,35,-56,36,-10,7,-56,126,-120,55,-12,
%T A217478 -8,84,-252,330,-220,78,-14,9,-120,462,-792,715,-364,105,-16,-10,165,
%U A217478 -792,1716,-2002,1365,-560,136,-18,11,-220,1287,-3432,5005,-4368,2380,-816,171,-20
%N A217478 Triangle of coefficients of polynomials providing the second term of the numerator for the generating function for odd powers (2*m+1) of Chebyshev S-polynomials. The present polynomials are called P(m;1,x^2).
%C A217478 The o.g.f. for S(n,x)^(2*m+1), m >= 0, with Chebyshev's S-polynomials (see A049310), is
%C A217478   G(m;z,x) := sum(S(n,x)^(2*m+1)*z^n, n=0..infinity)= sum(T(m,k)*S(2*k,x)/(1-z*x*tau(k,x)+z^2), k=0..m)/(x^2-4)^m, with the signed Riordan triangle
%C A217478   T(m,k) = binomial(2*m+1,m-k)*(-1)^(m-k) = A113187(m,k),
%C A217478   and tau(k,x):= R(2*k+1,x)/x with R the monic integer Chebyshev T-polynomials (see A127672). The proof uses the de Moivre-Binet formula: S(n,x) = (q^(n+1) - 1/q^(n+1))/(q-1/q), with q:=(x+sqrt(x^2-4))/2, and the one for tau(n,x) = (q^(2*n+1) + 1/q^(2*n+1))/(q+1/q). This can be written as  G(m;z,x) = Z(m;z,x)/N(m;z,x) with N(m;z,x) = product((1+z^2) - z*x*tau(k,x),k=0..m), and Z(m;z,x) = sum((1+z^2)^(m-l)*(-z*x)^l*P(m;l,x^2),l=0..m), where P(m;l,x^2) = sum(T(m,k)*S(2*k,x)*sigma(m;k,l,x^2), k=0..m)/(x^2-4)^m, with sigma(m;k,l,x^2) the elementary symmetric function of a product of l factors from tau(j,x), for j=0..m, with tau(k,x) missing. E.g., sigma(3;1,2,x^2) = tau(0,x)*tau(2,x) + tau(0,x)*tau(3,x) + tau(2,x)*tau(3,x), (tau(1,x) is missing). P(m;0,x^2) = 1 due to the identity Id(0;m,x^2) := sum(T(m,k)*S(2*k,x), k=0..m) = (x^2-4)^m (proof by using the de Moivre-Binet formula and the formula mentioned in a comment on A113187). Also the other P(m;l,x^2) turn out to be polynomials in x^2.
%C A217478 The present triangle a(m,k) provides the P(m;1,x^2) coefficients: P(m;1,x^2) = sum(a(m,k)*(x^2)^k, k=0..m-1), m>=1.
%C A217478 Using inclusion-exclusion one can write (x^2-4)^m*P(m;1,x^2) = sum(T(m,k)*S(2*k,x)*(sum(tau(k,x),k=0..m) - tau(k,x)), k=0..m) = sum(tau(k,x),k=0..m)*(x^2-4)^m - sum(T(m,k)*S(2*k,x)* tau(k,x),k=0..m), using the mentioned identity Id(0;m,x^2). In the second term S(2*k,x)*tau(k,x) = S(4*k+1,x)/x (de Moivre-Binet formulas for S and tau). This leads to the l=1 identity Id(1;m,x^2) := sum(T(m,k)*S(4*k+1,x)/x,k=0..m) =
%C A217478   ((x^2-4)*x^2)^m, using again de Moivre-Binet and the identity
%C A217478   given in a comment on A113187. Therefore, after dividing by (x^2-4)^m,  P(m;1,x^2) = sum(tau(k,x),k=0..m) - x^(2*m).
%F A217478 a(m,k) = [x^(2*k)] P(m;1,x^2) = [x^(2*k)](sum(tau(k,x),k=0..m) - x^(2*m)) (see the comment above), m>=1, k = 0..m-1.
%F A217478 a(m,k) = (-1)^(m-k)*binomial(m+k+1,2*k+1). For the proof one uses the identity sum(tau(j,x),j=0..m) = S(m,x^2-2) which holds by comparing the o.g.f.s of both sides (see a Nov 13 2012 comment on Riordan A053122 where tau is called r).
%e A217478 The triangle a(m,k) begins:
%e A217478 m\k   0    1    2     3     4      5     6     7    8    9 ...
%e A217478 1:   -2
%e A217478 2:    3   -4
%e A217478 3:   -4   10   -6
%e A217478 4:    5  -20   21    -8
%e A217478 5:   -6   35  -56    36   -10
%e A217478 6:    7  -56  126  -120    55    -12
%e A217478 7:    8   84 -252   330  -220     78   -14
%e A217478 8:    9 -120  462  -792   715   -364   105   -16
%e A217478 9:  -10  165 -792  1716 -2002   1365  -560   136  -18
%e A217478 10:  11 -220 1287 -3432  5005  -4368  2380  -816  171  -20
%e A217478 ...
%e A217478 P(2;1,x^2) = 3 - 4*x^2, appears in the second term of the numerator of the o.g.f. for S(n,x)^5 which is  Z(2;z,x) = (1+z^2)^2 + (1+z^2)*(-x*z)*(3-4*x^2) + ((-x*z)^2)*2*(-4 +3*x^2). The last term is taken from row m=2 of A217479. The denominator is  N(2;z,x) = product((1+z^2)-z*x*tau(k,x), k=0..2). This checks with [1,x^5,-1+5*x^2-10*x^4+10*x^6-5*x^8
%e A217478 +x^10,-32*x^5+80*x^7-80*x^9+40*x^11-10* x^13+x^15,...] for S(n,x)^5, n=0,1,2,3,...
%Y A217478 Cf. A049310, A217479 (P(m;2,x^2)).
%K A217478 sign,easy,tabl
%O A217478 1,1
%A A217478 _Wolfdieter Lang_, Nov 14 2012