cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A217479 Array of coefficients of polynomials providing the third term of the numerator of the generating function for odd powers (2*m+1) of Chebyshev S-polynomials. The present polynomials are called P(m;2,x^2), m >= 2.

This page as a plain text file.
%I A217479 #7 Nov 16 2012 12:27:54
%S A217479 -8,6,-27,65,-56,15,-61,260,-469,415,-176,28,-114,736,-2104,3214,
%T A217479 -2838,1456,-400,45,-190,1714,-6988,15699,-21461,18760,-10614,3768,
%U A217479 -760,66,-293,3507,-19195,58807,-112123,141441,-122168,73185,-30077,8107,-1288,91
%N A217479 Array of coefficients of polynomials providing the third term of the numerator of the generating function for odd powers  (2*m+1) of Chebyshev S-polynomials. The present polynomials are called P(m;2,x^2), m >= 2.
%C A217479 The row length of this irregular triangle is 2*(m-1), m >= 2.
%C A217479 For the o.g.f. of S(m,x)^(2*m+1), m>=0, with Chebyshev's S-polynomials (coefficient triangle A049310) see the comment on A217478. G(m;z,x) = Z(m;z,x)/N(m;z,x) with N(m;z,x) = product((1+z^2) - z*x*tau(k,x),k=0..m), and Z(m;z,x) = sum((1+z^2)^(m-l)*(-z*x)^l*P(m;l,x^2),l=0..m), where P(m,l,x^2) = sum(T(m,k)*S(2*k,x)*sigma(m;k,l,x^2), k=0..m)/(x^2-4)^m, with sigma(m;k,l,x^2) the elementary symmetric function of a product of l factors from tau(j,x), for j=0..m, with tau(k,x) missing. Here tau(j,x):= 2*T(2*j+1,x/2)/x = R(2*j+1,x)/x (see A127672 for the coefficients of R(n,x)).
%C A217479 The present array a(m,k) provides the P(m;2,x^2) coefficients, and m >= 2: P(m;2,x^2) = sum(a(m,k)*x^2,k=0..(2*m-3)).
%C A217479 Using inclusion-exclusion one can write (x^2-4)^m*P(m;2,x^2) =
%C A217479 sum(T(m,k)*S(2*k,x)*(sigma(m+1;2,x^2) - sum(tau(j,x),j=0..m)* tau(k,x) + tau(k,x)^2),k=0..m), with sigma(m+1;2,x^2) the elementary symmetric function of 2 factors from tau(j,x), for j=0,1,...,m. E.g.,m=2:  sigma(2+1;2,x^2) = tau(0,x)*tau(1,x) + tau(0,x)*tau(2,x) + tau(1,x)*tau(2,x). The identities Id(0;m,x^2) and Id(1;m,x^2) (given in the comment on A217478) together with the new identity Id(2;m,x^2) := sum(T(m,k)*S(2*k,x)*tau(k,x)^2,k=0..m) = (x^2-4)^m*((x^2-1)^(2*m+1) + 1)/x^2 are now used. The new identity is obtained from the de Moivre-Binet formula for S and tau using first twice the identity mentioned in a Nov 14 2012 comment on A113187, and then the identity q^3 - 1/q^3 = sqrt(x^2-4)*(x^2-1) (see the instance k=1 of the formula given in a Oct 18 2012 comment on A111125 with x -> q which is defined by  (x+sqrt(x^2-4))/2). This yields, after division by (x^2-4)^m, finally the polynomial P(2;m,x^2) = sigma(m+1;2,x^2) - sum(tau(j,x),j=0..m)*x^(2*m) + ((x^2-1)^(2*m+1) + 1)/x^2, for m >= 2.
%F A217479 a(m,k) = [x^(2*k)] P(2;m,x^2), m >= 2, k = 0..(2*m-3), with P(2;m,x^2) given in the comment above.
%e A217479 The array a(m,k) starts:
%e A217479 m\k   0    1     2     3      4     5      6    7    8  9 ...
%e A217479 2:   -8    6
%e A217479 3:  -27   65   -56    15
%e A217479 4:  -61  260  -469   415   -176    28
%e A217479 5: -114  736 -2104  3214  -2838  1456   -400   45
%e A217479 6: -190 1714 -6988 15699 -21461 18760 -10614 3768 -760 66
%e A217479 ...
%e A217479 Row m=7:  -293, 3507, -19195, 58807, -112123, 141441, -122168, 73185, -30077, 8107, -1288, 91.
%e A217479 Row m=8: -427, 6536, -46102, 183762, -461654, 780716, -926345, 790773, -491397, 221760, -71139, 15405, -2016, 120.
%e A217479 Row 9: -596, 11346, -100077, 502036, -1600280, 3470116, -5352805, 6051236, -5110145, 3256825, -1568416, 564980, -148176, 26770, -2976, 153.
%e A217479 m=2: P(2;2,x^2) = tau(0,x)*tau(1,x) + tau(0,x)*tau(2,x) + tau(1,x)*tau(2,x) - (tau(0,x)+tau(1,x)+tau(2,x))*x^4 + (5 -10*x^2 + 10*x^4 - 5*x^6 + x^8)  = -8 + 6*x^2 = 2*(-4 + 3*x^2).
%e A217479   The numerator of the o.g.f. for S(n,x)^5 is Z(2;z,x) = (1+z^2)^2 + (1+z^2)*(-x*z)*(3-4*x^2) + (-x*z)^2*2*(-4 + 3*x^2), where the last bracket in the second term comes from row m=2 of A217478. The denominator is N(2;z,x) = product((1+z^2)-z*x*tau(k,x), k=0..2). See the example of A217478.
%Y A217479 Cf. A217478.
%K A217479 sign,easy,tabf
%O A217479 2,1
%A A217479 _Wolfdieter Lang_, Nov 14 2012