This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A217484 #15 Jun 06 2013 17:07:16 %S A217484 1,4,21,168,1865,26348,450205,9011152,206624529,5338349652, %T A217484 153408637349,4853054571896,167576795780953,6271355892192316, %U A217484 252836327218276653,10924378168890333600,503589353964709474337,24669610145575233317540 %N A217484 Partial sums of the numbers in sequence A080253. %H A217484 Vincenzo Librandi, <a href="/A217484/b217484.txt">Table of n, a(n) for n = 0..100</a> %F A217484 a(n) = sum(c(k),k=0..n), where c(n) = A080253(n). %F A217484 E.g.f.: exp (x)/(2-exp(2*x)) + x*exp (x)/2 + (1/4)*exp(x)*log(1/(2-exp(2*x))). - corrected by _Vaclav Kotesovec_, Jan 02 2013 %F A217484 a(n) ~ n! * 2^(n-1/2)/(log(2))^(n+1). - _Vaclav Kotesovec_, Jan 02 2013 %t A217484 t[n_] := Sum[StirlingS2[n, k] k!, {k, 0, n}]; c[n_] := Sum[Binomial[n, k] 2^k t[k], {k, 0, n}]; Table[Sum[c[k], {k,0,n}], {n,0,100}] %o A217484 (Maxima) t(n):=sum(stirling2(n,k)*k!,k,0,n); %o A217484 c(n):=sum(binomial(n,k)*2^k*t(k),k,0,n); %o A217484 makelist(sum(c(k),k,0,n),n,0,10); %Y A217484 Cf. A080253, A000670, A217483, A217485, A217486, A217487, A217488. %K A217484 nonn %O A217484 0,2 %A A217484 _Emanuele Munarini_, Oct 04 2012