cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A217489 Least positive integer without a digit 1, not listed earlier and not divisible by any digit of the preceding term.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 8, 9, 20, 23, 25, 27, 29, 33, 22, 35, 26, 37, 32, 43, 34, 38, 28, 39, 40, 30, 44, 42, 45, 46, 47, 50, 24, 49, 53, 52, 57, 36, 55, 48, 54, 58, 59, 56, 62, 63, 64, 65, 67, 68, 69, 70, 60, 73, 74, 66, 75, 72, 79, 76, 80, 77, 78, 82, 83, 85, 84, 86, 87, 89, 92, 93, 88, 90
Offset: 1

Views

Author

M. F. Hasler and Eric Angelini, Oct 04 2012

Keywords

Comments

This sequence contains all terms of A052383 that are not divisible by 2520. - Peter Kagey, Nov 04 2015
From Robert Israel, Jan 03 2016: (Start)
Here is a proof of Peter Kagey's comment:
Any number x in A052383 will eventually appear in the sequence if there are infinitely many members of the sequence containing no digit that divides x.
If k in A052383 is coprime to 210 (and thus not divisible by any digit > 1), then k is in the sequence.
The numbers 2...23 with number of 2's not divisible by 3, and 5...57 with number of 5's == 2,4 or 5 (mod 6) are coprime to 210, and thus are in the sequence.
The repunits k...k with k = 5 or 7 and an even number of digits are not divisible by 2 or 3, and thus they are in the sequence.
The repunits k...k with k = 2,3,4,6,8, or 9 and number of digits not divisible by 6 are not divisible by 5 or 7, and thus they are in the sequence. Any x in A052383 not divisible by 2520 is not divisible by one of the digits 2,3,...9, and thus is in the sequence. (End)

Crossrefs

Sequence A217491 is a variant of the same idea (where injectivity is strengthened to strict monotonicity).

Programs

  • Maple
    N:= 1000: # to get all terms before the first that exceeds N
    A[1]:= 2:
    Av:= remove(t -> has(convert(t,base,10),1),{$3..N}):
    for n from 2 do
      d:= convert(convert(A[n-1],base,10),set) minus {0};
      Ad:= remove(t -> ormap(y -> t mod y = 0, d) , Av);
      if nops(Ad) = 0 then break fi;
      A[n]:= min(Ad);
      Av:= Av minus {A[n]};
    od:
    seq(A[i],i=1..n-1); # Robert Israel, Jan 03 2016
  • Mathematica
    a = {2}; Do[k = 1; While[Or[First@ DigitCount@ k > 0, MemberQ[a, k], Total[Boole@ Divisible[k, #] & /@ (IntegerDigits@ a[[n - 1]] /. 0 -> Nothing)] > 0], k++]; AppendTo[a, k], {n, 2, 74}]; a (* Michael De Vlieger, Nov 05 2015 *)