This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A217497 #20 Jul 24 2024 23:57:02 %S A217497 421,673,2473,4561,5821,9601,12301,14281,19861,30661,32173,33721, %T A217497 61261,67741,84121,94273,107773,110581,122173,134341,170773,203821, %U A217497 207673,223441,227473,265381,274201,287701,344941,365173,391273,396601,418273,423781,469141 %N A217497 Primes of the form 2*n^2 + 54*n + 25. %C A217497 Conjecture: 2^a(n)-1 is not prime; in other words, these primes are included in A054723. %C A217497 2*a(n) + 679 is a square. - _Vincenzo Librandi_, Apr 10 2015 %C A217497 Equivalently, primes of the form 36*n^2 + 36*n + 9. - _Charles R Greathouse IV_, Jul 24 2024 %H A217497 Vincenzo Librandi, <a href="/A217497/b217497.txt">Table of n, a(n) for n = 1..3000</a> %F A217497 a(n) >> n^2 log n. - _Charles R Greathouse IV_, Jul 24 2024 %t A217497 Select[Table[2 n^2 + 54 n + 25, {n, 500}], PrimeQ] %o A217497 (Magma) [a: n in [1..500] | IsPrime(a) where a is 2*n^2+54*n+25]; %o A217497 (PARI) list(lim)=my(v=List()); for(n=2,(sqrtint(lim\1*2+679)-27)\6, my(p=18*n^2 + 162*n + 25); if(isprime(p), listput(v,p))); Vec(v) \\ _Charles R Greathouse IV_, Jul 24 2024 %Y A217497 Subsequence of A002144. %Y A217497 Cf. A054723, A176549, A217494. %K A217497 nonn,easy %O A217497 1,1 %A A217497 _Vincenzo Librandi_, Oct 09 2012