cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A217500 Primes of the form 2*n^2 + 74*n + 35.

This page as a plain text file.
%I A217500 #22 Sep 08 2022 08:46:04
%S A217500 191,863,1091,1871,2963,3491,3863,4451,9011,15731,21191,21611,29363,
%T A217500 30851,35531,42863,44651,45863,47711,50231,52163,60251,65963,68171,
%U A217500 71171,75011,100151,101051,109331,112163,119891,144611,147863,164663,179951,204791,254963
%N A217500 Primes of the form 2*n^2 + 74*n + 35.
%C A217500 Conjecture: 2^a(n)-1 is not prime; in other words, these primes are included in A054723.
%C A217500 2*a(n) + 1299 is a square. - _Vincenzo Librandi_, Apr 09 2015
%H A217500 Vincenzo Librandi, <a href="/A217500/b217500.txt">Table of n, a(n) for n = 1..3000</a>
%t A217500 Select[Table[2n^2 + 74n + 35, {n, 600}], PrimeQ]
%o A217500 (Magma) [a: n in [1..600] | IsPrime(a) where a is 2*n^2 + 74*n + 35];
%Y A217500 Cf. Primes of the form 2*n^2+2*(2*k+3)*n+(2*k+1): A176549 (k=0), A154577 (k=2), A154592 (k=3), A154601 (k=4), A217494 (k=7), A217495 (k=10), A217496 (k=11), A217497 (k=12), A217498 (k=13), A217499 (k=16), this sequence (k=17), A217501 (k=18), A217620 (k=19), A217621 (k=21).
%Y A217500 Cf. A054723.
%Y A217500 Subsequence of A002145.
%K A217500 nonn,easy
%O A217500 1,1
%A A217500 _Vincenzo Librandi_, Oct 09 2012