This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A217537 #28 Mar 26 2022 16:31:39 %S A217537 1,0,1,1,1,1,1,4,3,1,4,11,13,6,1,11,41,55,35,10,1,41,162,256,200,80, %T A217537 15,1,162,715,1274,1176,595,161,21,1,715,3425,6791,7182,4361,1526,294, %U A217537 28,1,3425,17722,38553,45781,32256,13755,3486,498,36,1,17722,98253 %N A217537 Triangle read by rows, T(n,k) = T(n-1,k-1) + k*T(n-1,k) + (k+1)*T(n-1,k+1), T(0,0) = 1, n >= 0, k >= 0. %C A217537 Related to set partitions without singletons, T(n,0) = A000296(n). %H A217537 Peter Luschny, <a href="http://oeis.org/wiki/User:Peter_Luschny/AignerTriangles">Aigner Triangles</a> %F A217537 From _Mélika Tebni_, Mar 26 2022: (Start) %F A217537 E.g.f. column k: exp(exp(x) - 1 - x)*(exp(x) - 1)^k / k!, k >= 0. %F A217537 Sum_{k=0..n} (-1)^k*T(n, k) = (-1)^n. (End) %e A217537 [0] 1, %e A217537 [1] 0, 1, %e A217537 [2] 1, 1, 1, %e A217537 [3] 1, 4, 3, 1, %e A217537 [4] 4, 11, 13, 6, 1, %e A217537 [5] 11, 41, 55, 35, 10, 1, %e A217537 [6] 41, 162, 256, 200, 80, 15, 1, %e A217537 [7] 162, 715, 1274, 1176, 595, 161, 21, 1, %e A217537 [8] 715, 3425, 6791, 7182, 4361, 1526, 294, 28, 1 %t A217537 T[0, 0] = 1; T[n_, k_] /; 0 <= k <= n := T[n, k] = T[n - 1, k - 1] + k*T[n - 1, k] + (k + 1)*T[n - 1, k + 1]; T[_, _] = 0; %t A217537 Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Aug 02 2019 *) %o A217537 (Sage) %o A217537 def A217537_triangle(dim): %o A217537 T = matrix(ZZ,dim,dim) %o A217537 for n in range(dim): T[n,n] = 1 %o A217537 for n in (1..dim-1): %o A217537 for k in (0..n-1): %o A217537 T[n,k] = T[n-1,k-1]+k*T[n-1,k]+(k+1)*T[n-1,k+1] %o A217537 return T %o A217537 A217537_triangle(9) %Y A217537 Row sums are A217924, A000296 (first column). %K A217537 nonn,tabl %O A217537 1,8 %A A217537 _Peter Luschny_, Oct 06 2012