A217539 Number of Dyck paths of semilength n which satisfy the condition: number of returns + number of hills < number of peaks.
0, 0, 0, 1, 4, 17, 66, 252, 946, 3523, 13054, 48248, 178146, 657813, 2430962, 8995521, 33342588, 123822171, 460772982, 1718304786, 6421729878, 24051429321, 90272123682, 339522804129, 1279556832780, 4831639423695, 18278491474726, 69272752632502, 262981858878706
Offset: 0
Keywords
Examples
a(4) = 4 count the Dyck words [11010100] (()()()) [11011000] (()(())) [11100100] ((())()) [11101000] ((()())) .
Crossrefs
Cf. A217540.
Programs
-
Maple
A217539 := proc(n) local k; if n = 0 then 0 else (2*n)!/(n!^2*(n+1)) - add((n-1)!/(((n-1-k)!*iquo(k,2)!^2)*(iquo(k,2)+1)), k=0..n-1) fi end: seq(A217539(i), i=0..28);
-
Mathematica
MotzkinNumber[n_] := Sum[ Binomial[n+1, k]*Binomial[n+1-k, k-1], {k, 0, Ceiling[(n+1)/2]}]/(n+1); a[0] = a[1] = 0; a[n_] := CatalanNumber[n] - (n-1)*MotzkinNumber[n-2] - MotzkinNumber[n-1]; Table[a[n], {n, 0, 28}] (* Jean-François Alcover, Jun 27 2013, from 3rd formula *)
-
Sage
def A217539(n): @CachedFunction def M(n): return (3*(n-1)*M(n-2)+(2*n+1)*M(n-1))/(n+2) if n>1 else 1 @CachedFunction def catalan(n): return ((4*n-2)*catalan(n-1))/(n+1) if n>0 else 1 return catalan(n) - (n-1)*M(n-2) - M(n-1) if n!=0 else 0 [A217539(i) for i in (0..28)]
Formula
a(n) = Sum_{k < 0} A217540(n, k).
a(n) = C(n)-(n-1)*M(n-2)-M(n-1) for n > 0; C(n) Catalan, M(n) Motzkin numbers.
Conjecture: 2*(n+1)*(n-3)*a(n) +(-15*n^2+53*n-12)*a(n-1) +(28*n^2-157*n+165)*a(n-2) + 3*(3*n^2+2*n-26)*a(n-3) -18*(2*n-7)*(n-4)*a(n-4)=0. - R. J. Mathar, Nov 11 2012
Comments