This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A217540 #23 Oct 24 2016 05:58:44 %S A217540 1,0,0,1,0,0,1,0,1,0,0,1,1,2,0,1,0,0,1,3,4,2,3,0,1,0,0,1,6,10,9,8,3,4, %T A217540 0,1,0,0,1,10,25,30,26,17,13,4,5,0,1,0,0,1,15,56,90,90,70,49,27,19,5, %U A217540 6,0,1,0,0,1,21,112,245,301,266,197,128,80,39,26,6,7,0,1 %N A217540 Scambler statistic on Dyck paths. Triangle T(n, k) read by rows, n >= 0, -n <= k <= n, T(n, k) is the number of Dyck paths of semilength n and k = number of returns + number of hills - number of peaks. %H A217540 Alois P. Heinz, <a href="/A217540/b217540.txt">Rows n = 0..100, flattened</a> %H A217540 Peter Luschny, <a href="http://oeis.org/wiki/User:Peter_Luschny/OddsAndEnds#The_Scambler_statistic_on_Dyck_words">The Scambler_statistic_on_Dyck_words</a>. %F A217540 T(n,-1) = A014531(n-2) = [0,0,0],1,3,10,30,90,... %F A217540 T(n, 0) = A113682(n-2) = [1,0],1,1,4,9,26,70,197,... %F A217540 T(n, 1) = A194588(n-1) = [0],1,0,2,2,8,17,49,128,... %F A217540 Sum(k>=0,T(n,k)) = A189912(n-1) = [1],1,2,4,10,25, 66,177,.. %F A217540 Sum(k< 0,T(n,k)) = A217539(n) = 0,0,0,1, 4,17, 66,252,.. %F A217540 Sum(-n<=k<=n,T(n,k)) = A000108(n) = 1,1,2,5,14,42,132,429,.. %e A217540 [n\k] -8,-7,-6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8 %e A217540 ----------------------------------------------------------------------- %e A217540 [ 0 ] 1, %e A217540 [ 1 ] 0, 0, 1, %e A217540 [ 2 ] 0, 0, 1, 0, 1, %e A217540 [ 3 ] 0, 0, 1, 1, 2, 0, 1, %e A217540 [ 4 ] 0, 0, 1, 3, 4, 2, 3, 0, 1, %e A217540 [ 5 ] 0, 0, 1, 6, 10, 9, 8, 3, 4, 0, 1, %e A217540 [ 6 ] 0, 0, 1, 10, 25, 30, 26, 17, 13, 4, 5, 0, 1, %e A217540 [ 7 ] 0, 0, 1, 15, 56, 90, 90, 70, 49, 27, 19, 5, 6, 0, 1, %e A217540 [ 8 ] 0, 0, 1, 21, 112, 245, 301, 266, 197, 128, 80, 39, 26, 6, 7, 0, 1 %e A217540 . %e A217540 T(5, -2) = 6 counting the Dyck words %e A217540 [1101011000] (()()(())) [1101100100] (()(())()) [1101101000] (()(()())) %e A217540 [1110010100] ((())()()) [1110100100] ((()())()) [1110101000] ((()()())) . %p A217540 b:= proc(x, y, t) option remember; `if`(y<0 or y>x, 0, %p A217540 `if`(x=0, z, expand(`if`(y=0, z, 1)*(b(x-1, y+1, true) %p A217540 +b(x-1, y-1, false)*`if`(t and y<>1, 1/z, 1))))) %p A217540 end: %p A217540 T:= n-> `if`(n=0, 1, (p-> seq(coeff(p, z, i), i=-n..n)) %p A217540 (b(2*n-1, 1, true))): %p A217540 seq(T(n), n=0..10); # _Alois P. Heinz_, Jun 10 2014 %t A217540 b[x_, y_, t_] := b[x, y, t] = If[y<0 || y>x, 0, If[x == 0, z, Expand[If[y == 0, z, 1]*(b[x-1, y+1, True]+b[x-1, y-1, False]*If[t && y != 1, 1/z, 1])]]]; T[n_] := If[n == 0, 1, Function[p, Table[Coefficient[p, z, i], {i, -n, n}]][b[2*n-1, 1, True]]]; Table[T[n], {n, 0, 10}] // Flatten (* _Jean-François Alcover_, Oct 24 2016, after _Alois P. Heinz_ *) %o A217540 (Sage) %o A217540 def A217540(n, k): %o A217540 def characteristic(d): %o A217540 count = 1 %o A217540 h = d.heights() %o A217540 for i in (1..len(d)-1): %o A217540 if d[i-1]==1 and d[i]==0: count -= 1 %o A217540 if h[i]==0: count +=1 %o A217540 else: %o A217540 if h[i-1]==0 and h[i+1]==0: count += 1 %o A217540 return count %o A217540 if n == 0: return 1 %o A217540 count = 0 %o A217540 for d in DyckWords(n): %o A217540 if k == characteristic(d): count += 1 %o A217540 return count %o A217540 for n in (0..6): [A217540(n, k) for k in (-n..n)] %K A217540 nonn,tabf %O A217540 0,14 %A A217540 _Peter Luschny_, Oct 21 2012