A217555 Terms as well as digits are of alternating parity; this is the lexicographically earliest injective sequence with this property.
1, 2, 3, 4, 5, 6, 7, 8, 9, 210, 101, 212, 103, 214, 105, 216, 107, 218, 109, 230, 121, 232, 123, 234, 125, 236, 127, 238, 129, 250, 141, 252, 143, 254, 145, 256, 147, 258, 149, 270, 161, 272, 163, 274, 165, 276, 167, 278, 169, 290, 181, 292, 183
Offset: 1
Links
- Carole Dubois, Table of n, a(n) for n = 1..15484
- Eric Angelini, Odd/even: integers and digits alternate, SeqFan mailing list, Oct 06 2012
Crossrefs
Programs
-
PARI
{a(n,show=1,a=1,u)=for( i=2, n, u+=1<9, bittest( tt+0+tt\=10, 0 ) || next(2)); a=t; break )); a}
Formula
Conjectures from Colin Barker, Jan 16 2020: (Start)
G.f.: x*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + 201*x^9 - 110*x^10 + 110*x^11 - 110*x^12 + 110*x^13 - 110*x^14 + 110*x^15 - 110*x^16 + 110*x^17 - 110*x^18 - 80*x^19) / ((1 - x)^2*(1 + x)*(1 - x + x^2 - x^3 + x^4)*(1 + x + x^2 + x^3 + x^4)).
a(n) = a(n-1) + a(n-10) - a(n-11) for n>20.
(End)
Comments