A217569 Expansion of H(q)*G(q^11) where H and G are respectively the g.f. of A003106 and A003114 (Rogers-Ramanujan functions).
1, 0, 1, 1, 1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 9, 10, 12, 14, 17, 19, 23, 26, 31, 35, 42, 47, 55, 62, 72, 81, 94, 105, 121, 136, 155, 175, 199, 222, 252, 282, 318, 355, 400, 445, 501, 556, 624, 693, 774, 857, 957, 1059, 1178, 1302, 1446, 1596, 1769, 1951, 2158, 2376, 2624, 2885, 3182, 3495, 3847, 4221, 4642
Offset: 0
Keywords
Links
- Alexander Berkovich, Hamza Yesilyurt, On Rogers-Ramanujan functions, binary quadratic forms and eta-quotients, arXiv:1204.1092v2 [math.NT], 2012.
- Srinivasa Ramanujan, Algebraic relations between certain infinite products, Proceedings of the London Mathematical Society, vol.2, no.18, 1920.
Crossrefs
Programs
-
PARI
N=66; q='q+O('q^N ); S=2+2*ceil(sqrt(N)); G(q)=sum(n=0,S,q^(n^2)/prod(k=1,n,1-q^k)); /* g.f. of A003114 */ H(q)=sum(n=0,S,q^(n^2+n)/prod(k=1,n,1-q^k)); /* g.f. of A003106 */ Vec(H(q)*G(q^11)) /* show terms */ /* checking the modular equations, all expressions are zero: ( H(q)*G(q)^11 - q^2*G(q)*H(q)^11 ) - ( 1 + 11*q*(G(q)*H(q))^6 ) ( H(q)*G(q^11) - q^2*G(q)*H(q^11) ) - ( 1 ) E(q)=prod(n=1,N, 1-q^n); G(q)*H(q) - E(q^5)/E(q) G(q) - ( E(q^8)/E(q^2) * (G(q^16) + q*H(-q^4)) ) H(q) - ( E(q^8)/E(q^2) * (q^3*H(q^16) + G(-q^4)) ) */
-
PARI
N=66; q='q+O('q^N ); E=[2,3,7,8,11,12,13,17,18,22,23,27,28,32,33,37,38,42,43,44,47,48,52,53]; Vec( 1 / prod(K=0, N\55+1, prod(k=1,24, 1 - q^(K*55+E[k]) ) ) )
Formula
G.f.: H(q)*G(q^11) where G(q) = Sum_{n>=0} q^(n^2)/Product_{k=1..n} (1-q^k) and H(q) = Sum_{n>=0} q^(n^2+n)/Product_{k=1..n} (1-q^k).
G.f.: 1 / Product_{k>=0} (1 - q^k) where k (mod 55) is restricted to the set {2, 3, 7, 8, 11, 12, 13, 17, 18, 22, 23, 27, 28, 32, 33, 37, 38, 42, 43, 44, 47, 48, 52, 53} (the set has 24 elements).
Comments