cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A217569 Expansion of H(q)*G(q^11) where H and G are respectively the g.f. of A003106 and A003114 (Rogers-Ramanujan functions).

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 9, 10, 12, 14, 17, 19, 23, 26, 31, 35, 42, 47, 55, 62, 72, 81, 94, 105, 121, 136, 155, 175, 199, 222, 252, 282, 318, 355, 400, 445, 501, 556, 624, 693, 774, 857, 957, 1059, 1178, 1302, 1446, 1596, 1769, 1951, 2158, 2376, 2624, 2885, 3182, 3495, 3847, 4221, 4642
Offset: 0

Views

Author

Joerg Arndt, Oct 07 2012

Keywords

Comments

Also the expansion of 1+q^2*H(q^11)*G(q); that is, H(q)*G(q^11) - q^2*G(q)*H(q^11) = 1, we also have H(q)*G(q)^11 - q^2*G(q)*H(q)^11 = 1 + 11*q*(G(q)*H(q))^6, see the Ramanujan reference.
Number of partitions of n into parts t such that t mod 55 is in {2, 3, 7, 8, 11, 12, 13, 17, 18, 22, 23, 27, 28, 32, 33, 37, 38, 42, 43, 44, 47, 48, 52, 53}.
With E(q) = Product_{n>=1} (1-q^n) we have G(q)*H(q) - E(q^5)/E(q), G(q) = ( E(q^8)/E(q^2) * (G(q^16) + q*H(-q^4)) ), and H(q) = ( E(q^8)/E(q^2) * (q^3*H(q^16) + G(-q^4)) ), see the Berkovich/Yesilyurt reference.

Crossrefs

Cf. A003106 and A003114 (Rogers-Ramanujan functions H and G).
Cf. A121591 (expansion of q*(G(q)*H(q))^6).

Programs

  • PARI
    N=66; q='q+O('q^N );
    S=2+2*ceil(sqrt(N));
    G(q)=sum(n=0,S,q^(n^2)/prod(k=1,n,1-q^k)); /* g.f. of  A003114 */
    H(q)=sum(n=0,S,q^(n^2+n)/prod(k=1,n,1-q^k)); /* g.f. of A003106 */
    Vec(H(q)*G(q^11)) /* show terms */
    /* checking the modular equations, all expressions are zero:
    ( H(q)*G(q)^11 - q^2*G(q)*H(q)^11 ) - ( 1 + 11*q*(G(q)*H(q))^6 )
    ( H(q)*G(q^11) - q^2*G(q)*H(q^11) ) - ( 1 )
    E(q)=prod(n=1,N, 1-q^n);
    G(q)*H(q) - E(q^5)/E(q)
    G(q) - ( E(q^8)/E(q^2) * (G(q^16) + q*H(-q^4)) )
    H(q) - ( E(q^8)/E(q^2) * (q^3*H(q^16) + G(-q^4)) )
    */
    
  • PARI
    N=66; q='q+O('q^N );
    E=[2,3,7,8,11,12,13,17,18,22,23,27,28,32,33,37,38,42,43,44,47,48,52,53];
    Vec( 1 / prod(K=0, N\55+1,  prod(k=1,24, 1 - q^(K*55+E[k]) ) ) )

Formula

G.f.: H(q)*G(q^11) where G(q) = Sum_{n>=0} q^(n^2)/Product_{k=1..n} (1-q^k) and H(q) = Sum_{n>=0} q^(n^2+n)/Product_{k=1..n} (1-q^k).
G.f.: 1 / Product_{k>=0} (1 - q^k) where k (mod 55) is restricted to the set {2, 3, 7, 8, 11, 12, 13, 17, 18, 22, 23, 27, 28, 32, 33, 37, 38, 42, 43, 44, 47, 48, 52, 53} (the set has 24 elements).