A217570 Numbers n such that floor(sqrt(n)) = floor(n/(floor(sqrt(n))-1))-1.
9, 16, 17, 25, 26, 27, 36, 37, 38, 39, 49, 50, 51, 52, 53, 64, 65, 66, 67, 68, 69, 81, 82, 83, 84, 85, 86, 87, 100, 101, 102, 103, 104, 105, 106, 107, 121, 122, 123, 124, 125, 126, 127, 128, 129, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 169, 170, 171, 172, 173
Offset: 1
Keywords
Examples
As a triangle (see the first comment) this begins: 9; 16, 17; 25, 26, 27; 36, 37, 38, 39; 49, 50, 51, 52, 53; 64, 65, 66, 67, 68, 69; 81, 82, 83, 84, 85, 86, 87; 100, 101, 102, 103, 104, 105, 106, 107; etc. [_Bruno Berselli_, Oct 12 2012]
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Takumi Sato, Classification of Natural Numbers
Programs
-
Maple
seq($n^2 .. n^2 + n - 3, n=3..20); # Robert Israel, Dec 23 2024
-
PARI
is_A217570(n)={ n>3 & n\(n=sqrtint(n)-1)==n+2} \\ - M. F. Hasler, Oct 09 2012
Comments