This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A217575 #38 Sep 08 2022 08:46:04 %S A217575 2,6,7,12,13,14,20,21,22,23,30,31,32,33,34,42,43,44,45,46,47,56,57,58, %T A217575 59,60,61,62,72,73,74,75,76,77,78,79,90,91,92,93,94,95,96,97,98,110, %U A217575 111,112,113,114,115,116,117,118,119,132,133,134,135,136 %N A217575 Numbers n such that floor(sqrt(n)) = floor(n/floor(sqrt(n)))-1. %C A217575 One of four sequences given by classifying natural numbers according to the value of floor(sqrt(n)). See the paper in Link lines and A005563, A217570, A217571. %C A217575 Can be interpreted as a triangle read by rows: T(n,k) = n*(n+1)+k-1 with n>0, k=1..n. - _Bruno Berselli_, Oct 11 2012 %H A217575 Reinhard Zumkeller, <a href="/A217575/b217575.txt">Table of n, a(n) for n = 1..10000</a> %H A217575 Takumi Sato, <a href="http://vixra.org/abs/1210.0025">Classification of Natural Numbers</a> %F A217575 a(n) = A063657(n) - 1. - _Reinhard Zumkeller_, Jun 20 2015 %e A217575 As a triangle (see the second comment) this begins: %e A217575 2; %e A217575 6, 7; %e A217575 12, 13, 14; %e A217575 20, 21, 22, 23; %e A217575 30, 31, 32, 33, 34; %e A217575 42, 43, 44, 45, 46, 47; %e A217575 56, 57, 58, 59, 60, 61, 62; %e A217575 72, 73, 74, 75, 76, 77, 78, 79; %e A217575 90, 91, 92, 93, 94, 95, 96, 97, 98; etc. %e A217575 - _Bruno Berselli_, Oct 11 2012 %t A217575 Select[Range[200],Floor[Sqrt[#]]==Floor[#/Floor[Sqrt[#]]]-1&] (* _Harvey P. Dale_, Oct 06 2018 *) %o A217575 (Visual Basic in Excel) %o A217575 Sub A217575() %o A217575 Dim x As Long, n As Long, y As Long, i As Long %o A217575 x = InputBox("Count to") %o A217575 For n = 2 To x %o A217575 y = Int(Sqr(n)) %o A217575 If y = Int(n / y) - 1 Then %o A217575 i = i + 1 %o A217575 Cells(i, 1) = n %o A217575 End If %o A217575 Next n %o A217575 End Sub %o A217575 (Magma) [n: n in [1..150] | Isqrt(n) eq Floor(n/Isqrt(n))-1]; // _Bruno Berselli_, Oct 08 2012 %o A217575 (PARI) is_A217575(n)=n\(n=sqrtint(n))-1==n \\ - _M. F. Hasler_, Oct 09 2012 %o A217575 (Haskell) %o A217575 a217575 = subtract 1 . a063657 -- _Reinhard Zumkeller_, Jun 20 2015 %Y A217575 Cf. A005563, A217570, A217571. %Y A217575 Cf. A063657. %K A217575 nonn %O A217575 1,1 %A A217575 _Takumi Sato_, Oct 07 2012