This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A217581 #59 Apr 25 2024 13:55:58 %S A217581 1,1,1,2,1,2,1,2,3,2,1,3,1,2,3,2,1,3,1,2,3,2,1,3,5,2,3,2,1,5,1,2,3,2, %T A217581 5,3,1,2,3,5,1,3,1,2,5,2,1,3,7,5,3,2,1,3,5,7,3,2,1,5,1,2,7,2,5,3,1,2, %U A217581 3,7,1,3,1,2,5,2,7,3,1,5,3,2,1,7,5,2,3 %N A217581 Largest prime divisor of n <= sqrt(n), 1 if n is prime or 1. %C A217581 If we define a divisor d|n to be inferior if d <= n/d, then inferior divisors are counted by A038548 and listed by A161906. This sequence selects the greatest inferior prime divisor of n. - _Gus Wiseman_, Apr 06 2021 %H A217581 T. D. Noe, <a href="/A217581/b217581.txt">Table of n, a(n) for n = 1..10000</a> %e A217581 From _Gus Wiseman_, Apr 06 2021: (Start) %e A217581 The sequence selects the greatest element (or 1 if empty) of each of the following sets of strictly superior divisors: %e A217581 1:{} 16:{2} 31:{} 46:{2} %e A217581 2:{} 17:{} 32:{2} 47:{} %e A217581 3:{} 18:{2,3} 33:{3} 48:{2,3} %e A217581 4:{2} 19:{} 34:{2} 49:{7} %e A217581 5:{} 20:{2} 35:{5} 50:{2,5} %e A217581 6:{2} 21:{3} 36:{2,3} 51:{3} %e A217581 7:{} 22:{2} 37:{} 52:{2} %e A217581 8:{2} 23:{} 38:{2} 53:{} %e A217581 9:{3} 24:{2,3} 39:{3} 54:{2,3} %e A217581 10:{2} 25:{5} 40:{2,5} 55:{5} %e A217581 11:{} 26:{2} 41:{} 56:{2,7} %e A217581 12:{2,3} 27:{3} 42:{2,3} 57:{3} %e A217581 13:{} 28:{2} 43:{} 58:{2} %e A217581 14:{2} 29:{} 44:{2} 59:{} %e A217581 15:{3} 30:{2,3,5} 45:{3,5} 60:{2,3,5} %e A217581 (End) %p A217581 A217581 := n -> `if`(isprime(n) or n=1, 1, max(op(select(i->i^2<=n, numtheory[factorset](n))))); %t A217581 Table[If[n == 1 || PrimeQ[n], 1, Select[Transpose[FactorInteger[n]][[1]], # <= Sqrt[n] &][[-1]]], {n, 100}] (* _T. D. Noe_, Mar 25 2013 *) %o A217581 (PARI) a(n) = {my(m=1); foreach(factor(n)[,1], d, if(d^2 <= n, m=max(m,d))); m} \\ _Andrew Howroyd_, Oct 11 2023 %Y A217581 Cf. A033676. %Y A217581 Positions of first appearances are 1 and A001248. %Y A217581 These divisors are counted by A063962. %Y A217581 These divisors add up to A097974. %Y A217581 The smallest prime factor of the same type is A107286. %Y A217581 A strictly superior version is A341643. %Y A217581 A superior version is A341676. %Y A217581 A038548 counts superior (or inferior) divisors. %Y A217581 A048098 lists numbers without a strictly superior prime divisor. %Y A217581 A056924 counts strictly superior (or strictly inferior) divisors. %Y A217581 A063538/A063539 have/lack a superior prime divisor. %Y A217581 A140271 selects the smallest strictly superior divisor. %Y A217581 A161906 lists inferior divisors. %Y A217581 A207375 lists central divisors. %Y A217581 A341591 counts superior prime divisors. %Y A217581 A341642 counts strictly superior prime divisors. %Y A217581 A341673 lists strictly superior divisors. %Y A217581 - Inferior: A066839, A069288, A333749, A333750. %Y A217581 - Superior: A033677, A051283, A059172, A070038, A116882, A116883, A161908, A341592, A341593, A341675. %Y A217581 - Strictly Inferior: A060775, A333805, A333806, A341596, A341674. %Y A217581 - Strictly Superior: A238535, A341594, A341595, A341644, A341645, A341646. %Y A217581 Cf. A000005, A001055, A001221, A001222, A001248, A001414, A006530, A020639, A064052. %K A217581 nonn %O A217581 1,4 %A A217581 _Peter Luschny_, Mar 21 2013