cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A217598 Decimal expansion of the coefficient of asymptotic expression of m(n), the number of multiplicative compositions of n.

This page as a plain text file.
%I A217598 #17 Oct 16 2020 06:28:23
%S A217598 3,1,8,1,7,3,6,5,2,2,0,9,0,5,6,8,7,4,3,7,6,4,4,9,1,6,7,2,7,5,6,8,4,7,
%T A217598 1,0,4,5,1,3,5,1,9,8,5,4,4,9,2,9,0,9,5,3,2,3,8,9,3,1,1,5,3,7,2,5,9,3,
%U A217598 5,3,9,3,6,2,3,0,6,7,7,4,6,6,9,0,9,7,0,0,6,7,4,6,3,4,0,0,6,0,5
%N A217598 Decimal expansion of the coefficient of asymptotic expression of m(n), the number of multiplicative compositions of n.
%C A217598 From _Amiram Eldar_, Oct 16 2020: (Start)
%C A217598 Equals -1/(rho * zeta'(rho)), where rho is the root of zeta(rho) = 2 (A107311).
%C A217598 Equals lim_{k->oo} A173382(k)/k^rho. (End)
%D A217598 Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, page 293.
%e A217598 0.318173652...
%t A217598 rho = x /. FindRoot[Zeta[x] == 2, {x, 2}, WorkingPrecision -> 100]; RealDigits[-1/(rho*Zeta'[rho])] // First
%o A217598 (PARI) a217598={my(rho=solve(x=1.1,2,zeta(x)-2));-1/(rho*zeta'(rho))} \\ _Hugo Pfoertner_, Oct 16 2020
%Y A217598 Cf. A074206, A107311 (rho), A173382.
%K A217598 nonn,cons
%O A217598 0,1
%A A217598 _Jean-François Alcover_, Mar 19 2013