A217605 Number of partitions of n that are fixed points of a certain map (see comment).
1, 1, 0, 0, 2, 1, 1, 0, 1, 1, 3, 0, 3, 3, 3, 0, 4, 3, 2, 1, 6, 4, 5, 2, 5, 7, 10, 2, 10, 10, 11, 4, 9, 5, 14, 7, 13, 13, 18, 7, 20, 17, 22, 10, 22, 19, 32, 15, 26, 26, 40, 15, 37, 36, 43, 21, 44, 32, 55, 30, 46, 43, 75, 32, 67, 62, 83, 40, 82, 61, 104, 58, 89, 71, 136, 66, 114, 97, 149, 77, 143, 106, 176, 101, 160, 123, 222, 114, 190
Offset: 0
Keywords
Examples
a(16) = 4 because the following partitions of 16 are fixed points: 4* 2 + 2* 4 = 2 + 2 + 2 + 2 + 4 + 4 4* 4 = 4 + 4 + 4 + 4 6* 1 + 2* 2 + 1* 6 = 1 + 1 + 1 + 1 + 1 + 1 + 2 + 2 + 6 8* 1 + 1* 8 = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 8 From _Gus Wiseman_, May 04 2019: (Start) The a(1) = 1 through a(16) = 4 partitions are the following (empty columns not shown). The Heinz numbers of these partitions are given by A048768. 1 22 221 3111 41111 333 3331 33222 33322 333221 4444 211 322111 4221111 332221 52211111 442222 511111 6111111 333211 71111111 622111111 811111111 (End)
Links
- James Allen Fill, Svante Janson, Mark Daniel Ward, Partitions with Distinct Multiplicities of Parts: On An "Unsolved Problem" Posed By Herbert S. Wilf, The Electronic Journal of Combinatorics, vol.19, no.2, 2012.
- Stephan Wagner, The Number of Fixed Points of Wilf's Partition Involution, The Electronic Journal of Combinatorics, 20(4) (2013), #P13.
Programs
-
Mathematica
winv[n_]:=Times@@Cases[FactorInteger[n],{p_,k_}:>Prime[k]^PrimePi[p]]; Table[Length[Select[IntegerPartitions[n],winv[Times@@Prime/@#]==Times@@Prime/@#&]],{n,0,30}] (* Gus Wiseman, May 04 2019 *)
Comments