This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A217629 #41 Sep 08 2022 08:46:04 %S A217629 1,3,1,9,6,2,27,27,18,6,81,108,108,72,24,243,405,540,540,360,120,729, %T A217629 1458,2430,3240,3240,2160,720,2187,5103,10206,17010,22680,22680,15120, %U A217629 5040,6561,17496,40824,81648,136080,181440,181440,120960,40320 %N A217629 Triangle, read by rows, where T(n,k) = k!*C(n, k)*3^(n-k) for n>=0, k=0..n. %C A217629 Triangle formed by the derivatives of x^n evaluated at x=3. %C A217629 Sum(T(n,k), k=0..n) = A053486(n) (see the Formula section of A053486). Also: %C A217629 first column: A000244; %C A217629 second column: A027471; %C A217629 third column: 2*A027472; %C A217629 fourth column: 6*A036216; %C A217629 fifth column: 24*A036217. %H A217629 Vincenzo Librandi, <a href="/A217629/b217629.txt">Rows n = 0..100, flattened</a> %F A217629 T(n,k) = 3^(n-k)*n!/(n-k)! for n>=0, k=0..n. %F A217629 E.g.f. (by columns): exp(3x)*x^k. %e A217629 Triangle begins: %e A217629 1; %e A217629 3, 1; %e A217629 9, 6, 2; %e A217629 27, 27, 18, 6; %e A217629 81, 108, 108, 72, 24; %e A217629 243, 405, 540, 540, 360, 120; %e A217629 729, 1458, 2430, 3240, 3240, 2160, 720; %e A217629 2187, 5103, 10206, 17010, 22680, 22680, 15120, 5040; %e A217629 6561, 17496, 40824, 81648, 136080, 181440, 181440, 120960, 40320; etc. %t A217629 Flatten[Table[n!/(n-k)!*3^(n-k), {n, 0, 10}, {k, 0, n}]] %o A217629 (Magma) [Factorial(n)/Factorial(n-k)*3^(n-k): k in [0..n], n in [0..10]]; %Y A217629 Cf. A000244, A027471, A027472, A036216, A036217, A053486, A090802, A218016, A218017. %K A217629 nonn,tabl,easy %O A217629 0,2 %A A217629 _Vincenzo Librandi_, Nov 10 2012