A217631 Number of nX2 arrays of the minimum value of corresponding elements and their horizontal and vertical neighbors in a random 0..1 nX2 array.
0, 2, 6, 16, 38, 98, 244, 614, 1542, 3872, 9726, 24426, 61348, 154078, 386974, 971904, 2440982, 6130642, 15397396, 38671286, 97124758, 243933408, 612650254, 1538699994, 3864517572, 9705918062, 24376870766, 61223660096, 153766108518
Offset: 0
Keywords
Examples
Some solutions for n=3 ..0..0....0..0....0..0....1..1....0..0....1..0....1..0....0..1....1..1....0..0 ..0..1....0..0....0..1....0..1....1..0....0..0....0..0....0..0....1..1....1..0 ..0..0....1..0....1..1....0..0....0..0....0..0....1..0....0..1....1..1....1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 0..210
- R. Euler, P. Oleksik, Z. Skupien, Counting Maximal Distance-Independent Sets in Grid Graphs, Discussiones Mathematicae Graph Theory. Volume 33, Issue 3, Pages 531-557, ISSN (Print) 2083-5892, July 2013; http://www.degruyter.com/view/j/dmgt.2013.33.issue-3/dmgt.1707/dmgt.1707.xml
Formula
G.f. = (2*x+4*x^2+4*x^3)/(1-x-3*x^2-2*x^3). [Euler et al.] - N. J. A. Sloane, Nov 21 2013
Empirical: a(n) = a(n-1) + 3*a(n-2) + 2*a(n-3). (Follows from g.f. - N. J. A. Sloane, Nov 21 2013)
Comments