cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A217632 Number of nX3 arrays of the minimum value of corresponding elements and their horizontal and vertical neighbors in a random 0..1 nX3 array.

This page as a plain text file.
%I A217632 #12 Jul 22 2025 23:41:17
%S A217632 0,4,16,66,244,968,3726,14520,56352,218978,850620,3304624,12837742,
%T A217632 49872976,193747784,752680930,2924043092,11359448344,44129645550,
%U A217632 171436683864,666004286592,2587320999714,10051331417116,39047827550656
%N A217632 Number of nX3 arrays of the minimum value of corresponding elements and their horizontal and vertical neighbors in a random 0..1 nX3 array.
%C A217632 Also, number of maximal independent sets in the 3-dimensional (2, 3, n) grid graph. [Euler et al.] - _N. J. A. Sloane_, Nov 21 2013
%C A217632 Column 3 of A217637.
%H A217632 R. H. Hardin, <a href="/A217632/b217632.txt">Table of n, a(n) for n = 0..184</a>
%H A217632 R. Euler, P. Oleksik, Z. Skupien, <a href="http://dx.doi.org/10.7151/dmgt.1707">Counting Maximal Distance-Independent Sets in Grid Graphs</a>, Discussiones Mathematicae Graph Theory. Volume 33, Issue 3, Pages 531-557, ISSN (Print) 2083-5892, July 2013; http://www.degruyter.com/view/j/dmgt.2013.33.issue-3/dmgt.1707/dmgt.1707.xml
%F A217632 Empirical: a(n) = 2*a(n-1) +9*a(n-2) -2*a(n-3) -17*a(n-4) -4*a(n-5) +8*a(n-6) -3*a(n-7) +a(n-8) -3*a(n-9) -2*a(n-10) +4*a(n-11)
%F A217632 Euler et al. give an explicit g.f. and recurrence, and so (presumably) prove this recurrence is correct. - _N. J. A. Sloane_, Nov 21 2013
%e A217632 Some solutions for n=3
%e A217632 ..1..0..0....0..0..0....0..0..0....1..0..0....0..0..1....0..0..1....1..1..0
%e A217632 ..0..1..0....0..0..0....0..0..1....0..0..0....0..0..1....0..0..1....1..0..0
%e A217632 ..0..0..1....0..1..1....0..0..1....1..0..1....0..0..0....0..0..1....0..0..0
%Y A217632 Cf. A217637.
%K A217632 nonn
%O A217632 0,2
%A A217632 _R. H. Hardin_ Oct 09 2012