cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A217654 Triangular array read by rows. T(n,k) is the number of unlabeled directed graphs of n nodes that have exactly k isolated nodes.

This page as a plain text file.
%I A217654 #24 Dec 07 2019 12:06:13
%S A217654 1,0,1,2,0,1,13,2,0,1,202,13,2,0,1,9390,202,13,2,0,1,1531336,9390,202,
%T A217654 13,2,0,1,880492496,1531336,9390,202,13,2,0,1,1792477159408,880492496,
%U A217654 1531336,9390,202,13,2,0,1,13026163465206704,1792477159408,880492496,1531336,9390,202,13,2,0,1
%N A217654 Triangular array read by rows.  T(n,k) is the number of unlabeled directed graphs of n nodes that have exactly k isolated nodes.
%C A217654 Row sums give A000273.
%C A217654 Column k = 0 is A053598.
%H A217654 Alois P. Heinz, <a href="/A217654/b217654.txt">Rows n = 0..43, flattened</a>
%F A217654 O.g.f.: A(x)*(1-x)/(1-y*x) where A(x) is o.g.f. for A000273.
%e A217654 Triangle T(n,k) begins:
%e A217654         1;
%e A217654         0,    1;
%e A217654         2,    0,   1;
%e A217654        13,    2,   0,  1;
%e A217654       202,   13,   2,  0, 1;
%e A217654      9390,  202,  13,  2, 0, 1;
%e A217654   1531336, 9390, 202, 13, 2, 0, 1;
%e A217654   ...
%p A217654 b:= proc(n, i, l) `if`(n=0 or i=1, 1/n!*2^((p-> add(p[j]-1+add(
%p A217654       igcd(p[k], p[j]), k=1..j-1)*2, j=1..nops(p)))([l[], 1$n])),
%p A217654       add(b(n-i*j, i-1, [l[], i$j])/j!/i^j, j=0..n/i))
%p A217654     end:
%p A217654 g:= proc(n) option remember; b(n$2, []) end:
%p A217654 T:= (n, k)-> g(n-k)-`if`(k<n, g(n-k-1), 0):
%p A217654 seq(seq(T(n, k), k=0..n), n=0..10);  # _Alois P. Heinz_, Sep 04 2019
%t A217654 Needs["Combinatorica`"]; f[list_]:=Insert[Select[list,#>0&],0,-2]; nn=10; s=Sum[NumberOfDirectedGraphs[n]x^n, {n,0,nn}]; Drop[Flatten[Map[f, CoefficientList[Series[s (1-x)/(1-y x), {x,0,nn}], {x,y}]]], 1]
%t A217654 (* Second program: *)
%t A217654 b[n_, i_, l_List] := If[n==0 || i==1, 1/n!*2^(Function[p, Sum[p[[j]] - 1 + Sum[GCD[p[[k]], p[[j]]], {k, 1, j - 1}]*2, {j, 1, Length[p]}]][Join[l, Array[1&, n]]]), Sum[b[n - i*j, i - 1, Join[l, Array[i&, j]]]/j!/i^j, {j, 0, n/i}]];
%t A217654 g[n_] := g[n] = b[n, n, {}];
%t A217654 T[n_, k_] := g[n - k] - If[k < n, g[n - k - 1], 0];
%t A217654 Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* _Jean-François Alcover_, Dec 07 2019, after _Alois P. Heinz_ *)
%Y A217654 Cf. A000273, A053598.
%K A217654 nonn,tabl
%O A217654 0,4
%A A217654 _Geoffrey Critzer_, Oct 09 2012