This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A217657 #24 Jul 01 2022 22:10:38 %S A217657 0,0,0,0,0,0,0,0,0,0,0,1,2,3,4,5,6,7,8,9,0,1,2,3,4,5,6,7,8,9,0,1,2,3, %T A217657 4,5,6,7,8,9,0,1,2,3,4,5,6,7,8,9,0,1,2,3,4,5,6,7,8,9,0,1,2,3,4,5,6,7, %U A217657 8,9,0,1,2,3,4,5,6,7,8,9,0,1,2,3,4,5,6,7,8,9,0,1,2,3,4,5,6,7,8,9,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20 %N A217657 Delete the initial digit in decimal representation of n. %C A217657 When n - a(n)*10^[log_10 n] >= 10^[(log_10 n) - 1], where [] denotes floor, or when n < 100 and 10|n, n is the concatenation of A000030(n) and a(n) - corrected by _Glen Whitney_, Jul 01 2022 %C A217657 a(110) = 10 is the first term > 9. The sequence consists of 10 repetitions of 0 (n = 0..9), then 9 repetitions of {0, ..., 9} (n = 10..99), then 9 repetitions of {0, ..., 99} (n = 100..999), and so on. - _M. F. Hasler_, Oct 18 2017 %H A217657 Reinhard Zumkeller, <a href="/A217657/b217657.txt">Table of n, a(n) for n = 0..10000</a> %F A217657 a(n) = 0 if n <= 9, otherwise 10*a(floor(n/10)) + n mod 10. %F A217657 a(n) = n mod 10^floor(log_10(n)), a(0) = 0. - _M. F. Hasler_, Oct 18 2017 %t A217657 Array[FromDigits@ Rest@ IntegerDigits@ # &, 121, 0] (* _Michael De Vlieger_, Dec 22 2019 *) %o A217657 (Haskell) %o A217657 a217657 n | n <= 9 = 0 %o A217657 | otherwise = 10 * a217657 n' + m where (n', m) = divMod n 10 %o A217657 (PARI) apply( A217657(n)=n%10^logint(n+!n,10), [0..199]) \\ _M. F. Hasler_, Oct 18 2017, edited Dec 22 2019 %o A217657 (Python) %o A217657 def a(n): return 0 if n < 10 else int(str(n)[1:]) %o A217657 print([a(n) for n in range(121)]) # _Michael S. Branicky_, Jul 01 2022 %Y A217657 Cf. A059995 (drop final digit of n), A000030 (initial digit of n), A202262. %K A217657 nonn,base,look %O A217657 0,13 %A A217657 _Reinhard Zumkeller_, Oct 10 2012 %E A217657 Data extended to include the first terms larger than 9, by _M. F. Hasler_, Dec 22 2019