cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A217662 For n > 2 , a(n) = a(n-2) + lcm(a(n-2), n-1) with a(1)=2, a(2)=2.

This page as a plain text file.
%I A217662 #15 Aug 20 2020 18:48:55
%S A217662 2,2,4,8,8,48,32,384,64,1536,384,18432,768,258048,6144,1548288,12288,
%T A217662 27869184,49152,557383680,294912,1114767360,3538944,26754416640,
%U A217662 7077888,160526499840,99090432,321052999680,198180864,9631589990400,1189085184,308210879692800
%N A217662 For n > 2 , a(n) = a(n-2) + lcm(a(n-2), n-1) with a(1)=2, a(2)=2.
%C A217662 A217663(n) = a(n+2)/a(n)-1 consists of 1's and primes only.
%F A217662 For prime p > 2, a(p+1) = (p+1)*a(p-1), which proves the statement in A217663. - _M. F. Hasler_, Oct 11 2012
%t A217662 RecurrenceTable[{a[n]==a[n-2]+LCM[n-1,a[n-2]],a[1] == 2,a[2]==2},a,{n,1, 24}]
%t A217662 t = {2, 2}; Do[AppendTo[t, t[[-2]] + LCM[n-1, t[[-2]]]], {n, 3, 40}]; t (* _T. D. Noe_, Oct 10 2012 *)
%t A217662 nxt[{n_,a_,b_}]:={n+1,b,a+LCM[a,n]}; NestList[nxt,{2,2,2},40][[All,2]] (* _Harvey P. Dale_, Aug 20 2020 *)
%Y A217662 Cf. A135504.
%K A217662 nonn
%O A217662 1,1
%A A217662 _Pedja Terzic_, Oct 10 2012