This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A217686 #17 Aug 07 2025 21:01:54 %S A217686 1,4,5,19,24,43,67,445,1847,4139,5986,63999,69985,343939,15891179, %T A217686 48017476,63908655,175834786,239743441,415578227,655321668,1070899895, %U A217686 3868021353,62959241543,129786504439,711891763738,841678268177,3236926568269,7315531404715,17867989377699 %N A217686 Denominators of the continued fraction convergents of log_10((1+sqrt(5))/2). %C A217686 Lucas(Denominator of convergents) get increasingly closer to the values of 10^(Numerator of convergents). %C A217686 For example, %C A217686 Lucas(19) = 9349 ~ 10^4, error = 6.51% %C A217686 Lucas(24) = 103682 ~ 10^5, error = 3.682% %C A217686 Lucas(43) = 969323029 ~ 10^9, error = 3.068% %C A217686 Lucas(67) = 100501350283429 ~ 10^14, error = 0.501% %C A217686 In fact, for sufficiently large values of n, we will have that Lucas(n) ~ ((1+sqrt(5))/2)^n. %F A217686 a(n) = A217684(n)*a(n-1) + a(n-2). %o A217686 (PARI) default(realprecision, 21000); for(i=1, 100, print(contfracpnqn(contfrac(log((1+sqrt(5))/2)/log(10), , i))[2, 1])) %Y A217686 Cf. A217684 (continued fraction expansion of log_10((1+sqrt(5))/2)). %Y A217686 Cf. A217685 (numerators of the continued fraction convergents of log_10((1+sqrt(5))/2)). %K A217686 nonn,cofr,frac %O A217686 0,2 %A A217686 _V. Raman_, Oct 11 2012