This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A217688 #16 Aug 07 2025 21:36:07 %S A217688 0,1,2,3,17,31,45,138,231,617,72496,144375,216254,288133,360012, %T A217688 431891,503770,575649,647528,719407,791286,863165,935044,1006923, %U A217688 1078802,1150681,1222560,1294439,1366318,1438197,1510076,1581955,1653834,1725713,1797592,1869471,1941350,2013229,2085108,2156987 %N A217688 Values of n such that 10^n gets increasingly closer to a Fibonacci number (measured by the ratio between the power of 10 and the nearest Fibonacci number). %C A217688 The sequence A217685 gives the sequence of values n such that 10^n gets increasingly closer to a Lucas number. %C A217688 Given that for sufficiently large values of n, Fibonacci(n) ~ Lucas(n)/sqrt(5) ~ (((1+sqrt(5))/2)^n)/(sqrt(5)), the intermediate differences between the terms in this sequence also need to be a member of the sequence A217685. %o A217688 (PARI) default(realprecision, 1000); a=vector(100,i,(contfracpnqn(contfrac(log((1+sqrt(5))/2)/log(10), , i))[2, 1])) %o A217688 log_fibonacci(j)=(j*log((1+sqrt(5))/2)/log(10))-(log(sqrt(5))/log(10)) %o A217688 deviation(k)=abs(round(log_fibonacci(k))-log_fibonacci(k)) %o A217688 n=6;err=deviation(n);m=3;while(n<10^20,if(deviation(n+a[m])<err,n=n+a[m];err=deviation(n);print(round(log_fibonacci(n))),m++)) %Y A217688 Cf. A217684, A217685, A217686, A217687. %K A217688 nonn,base %O A217688 1,3 %A A217688 _V. Raman_, Oct 11 2012