cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A344512 a(n) is the least number larger than 1 which is a self number in all the bases 2 <= b <= n.

Original entry on oeis.org

4, 13, 13, 13, 287, 287, 2971, 2971, 27163, 27163, 90163, 90163, 5940609, 5940609, 6069129, 6069129, 276404649, 276404649
Offset: 2

Views

Author

Amiram Eldar, May 21 2021

Keywords

Comments

Since the sequence of base-b self numbers for odd b is the sequence of the odd numbers (A005408) (Joshi, 1973), all the terms beyond a(2) are odd numbers.
For the corresponding sequence with only even bases, see A344513.
a(20) > 1.5*10^10, if it exists.

Examples

			a(2) = 4 since the least binary self number after 1 is A010061(2) = 4.
a(3) = 13 since the least binary self number after 1 which is also a self number in base 3 is A010061(4) = 13.
		

References

  • Vijayshankar Shivshankar Joshi, Contributions to the theory of power-free integers and self-numbers, Ph.D. dissertation, Gujarat University, Ahmedabad (India), October, 1973.
  • József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 4, p. 384-386.

Crossrefs

Programs

  • Mathematica
    s[n_, b_] := n + Plus @@ IntegerDigits[n, b]; selfQ[n_, b_] := AllTrue[Range[n, n - (b - 1) * Ceiling @ Log[b, n], -1], s[#, b] != n &]; a[2] = 4; a[b_] := a[b] = Module[{n = a[b - 1]}, While[! AllTrue[Range[2, b], selfQ[n, #] &], n++]; n]; Array[a, 10, 2]

Formula

a(2*n+1) = a(2*n) for n >= 2.

A344513 a(n) is the least number larger than 1 which is a self number in all the even bases b = 2*k for 1 <= k <= n.

Original entry on oeis.org

4, 13, 287, 294, 6564, 90163, 1136828, 3301262, 276404649, 5643189146
Offset: 1

Views

Author

Amiram Eldar, May 21 2021

Keywords

Comments

Joshi (1973) proved that for all odd b the sequence of base-b self numbers is the sequence of odd numbers (A005408). Therefore, in this sequence the bases are restricted to even values. For the corresponding sequence with both odd and even bases, see A344512.

Examples

			a(1) = 4 since the least binary self number after 1 is A010061(2) = 4.
a(2) = 13 since the least binary self number after 1 which is also a self number in base 2*2 = 4 is A010061(4) = A010064(4) = 13.
		

References

  • Vijayshankar Shivshankar Joshi, Contributions to the theory of power-free integers and self-numbers, Ph.D. dissertation, Gujarat University, Ahmedabad (India), October, 1973.
  • József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 4, p. 384-386.

Crossrefs

Programs

  • Mathematica
    s[n_, b_] := n + Plus @@ IntegerDigits[n, b]; selfQ[n_, b_] := AllTrue[Range[n, n - (b - 1) * Ceiling @ Log[b, n], -1], s[#, b] != n &]; a[1] = 4; a[n_] := a[n] = Module[{k = a[n - 1]}, While[! AllTrue[Range[1, n], selfQ[k, 2*#] &], k++]; k]; Array[a, 7]
Showing 1-2 of 2 results.