cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A217711 Total number of 321 patterns in the set of permutations avoiding 123.

This page as a plain text file.
%I A217711 #16 Nov 27 2018 04:45:35
%S A217711 1,16,144,1016,6271,35584,190628,979496,4876530,23686560,112796176,
%T A217711 528495600,2442949979,11163970432,50520351612,226688100104,
%U A217711 1009648508590,4467591809376,19654294688768,86018255452048,374715017442966,1625489878136576,7024392489806344
%N A217711 Total number of 321 patterns in the set of permutations avoiding 123.
%C A217711 a(n) is the total number of occurrences of 321 patterns in the set of all 123-avoiding n-permutations.
%H A217711 Cheyne Homberger, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v19i3p43">Expected patterns in permutation classes</a>, Electronic Journal of Combinatorics, 19(3) (2012), P43.
%F A217711 G.f.: 1/2*(32*x^4 - 88*x^3 + 52*x^2 + sqrt(-4*x + 1)*(36*x^3 - 34*x^2 + 10*x - 1) - 12*x + 1)/(64*x^4 - 48*x^3 + 12*x^2 - x).
%F A217711 Conjecture: -(n+1)*(25*n-3314)*a(n) -5*n*(5*n+9446)*a(n-1) +2*(594*n^2 +128863*n -142613)*a(n-2) +16*(-119*n^2-39230*n+87888)*a(n-3) -32*(2*n-7)*(53*n-8687)*a(n-4)=0. - _R. J. Mathar_, Oct 08 2016
%e A217711 a(3) = 1 since there is only one 321 pattern in the set {132, 213, 231, 312, 321}.
%K A217711 nonn
%O A217711 3,2
%A A217711 _Cheyne Homberger_, Mar 20 2013