This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A217712 #10 Jun 02 2013 16:00:33 %S A217712 0,1,3,3,11,13,27,54,106,168,378,142,733,1597,1283,3418,8204,10112, %T A217712 24644,7829,32866,78136,178741,37002,256392,650596,1402914,286854, %U A217712 2053463 %N A217712 Number of primes occurring exactly once as numerators in sums generated from the set 1, 1/2, 1/3,..., 1/n. %C A217712 For information about how often the numerator of the generated sums is prime, see A075188 and A075189; for the largest generated prime, see A075226; for the smallest odd prime not generated, see A075227. %e A217712 For n=3 there are the following fractions as sums of 1, 1/2 and 1/3: %e A217712 {1/3, 1/2, 5/6, 1, 4/3, 3/2, 11/6}, three numerators are prime and they occur exactly once, therefore a(3) = A075188(3) = A075189(3) = #{3, 5, 11} = 3; %e A217712 n=4: adding 1/4 to the previous fractions gives together: 1/4, 1/3, 1/2, 1/3+1/4=7/12, 1/2+1/4=3/4, 5/6, 1, 5/6+1/4=13/12, 1+1/4=5/4, 4/3, 3/2, 4/3+1/4=19/12, 3/2+1/4=7/4, 11/6 and 11/6+1/4=25/12: %e A217712 A075188(4) = #{7/12, 3/4, 5/6, 13/12, 5/4, 3/2, 19/12, 7/4, 11/6} = 9, %e A217712 A075189(4) = #{3, 5, 7, 11, 13, 19} = 6, %e A217712 a(4) = #{11, 13, 19} = 3. %o A217712 (Haskell) %o A217712 import Data.Ratio ((%), numerator) %o A217712 import Data.Set (Set, empty, fromList, toList, union, size) %o A217712 import Data.Set (member, delete, insert) %o A217712 a217712 n = a217712_list !! (n-1) %o A217712 a217712_list = f 1 empty empty where %o A217712 f x s s1 = size s1' : f (x + 1) (s `union` fromList hs) s1' where %o A217712 s1' = g s1 $ filter ((== 1) . a010051') $ map numerator hs %o A217712 g v [] = v %o A217712 g v (w:ws) | w `member` v = g (delete w v) ws %o A217712 | otherwise = g (insert w v) ws %o A217712 hs = map (+ 1 % x) $ 0 : toList s %Y A217712 Cf. A010051. %K A217712 nonn %O A217712 1,3 %A A217712 _Reinhard Zumkeller_, Jun 02 2013