This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A217714 #31 Jan 24 2020 03:31:18 %S A217714 1,0,-2,-3,4,15,-62,-273,1384,7935,-50522,-353793,2702764,22368255, %T A217714 -199360982,-1903757313,19391512144,209865342975,-2404879675442, %U A217714 -29088885112833,370371188237524,4951498053124095,-69348874393137902,-1015423886506852353,15514534163557086904,246921480190207983615,-4087072509293123892362 %N A217714 Modified Euler numbers. %C A217714 a(n) and differences are: %C A217714 1, 0, -2, -3, 4, 15, -62; %C A217714 -1, -2, -1, 7, 11, -77; %C A217714 -1, 1, 8, 4, -88; %C A217714 2, 7, -4, -92; %C A217714 5, -11, -88; %C A217714 -16, -77; %C A217714 -61; %C A217714 (See the array in A163982(n) and the comments/examples in A090158 and A090145.) %C A217714 The absolute values of the first column are A000111(n). %C A217714 The first column can be found via the Akiyama-Tanigawa algorithm. See the chapter on the Seidel triangle in Wikipedia's Bernoulli Number. %H A217714 Wikipedia, <a href="http://en.wikipedia.org/wiki/Bernoulli_number#An_algorithmic_view:_the_Seidel_triangle">Bernoulli Number, Seidel triangle</a> %F A217714 a(n) = -A163982(n) - 1. %F A217714 a(n) = Sum_{k=0..n} A109449(n,k)*floor((n-k+1)/2). - _Philippe Deléham_, Oct 27 2013 %F A217714 E.g.f.: 1/cosh(x) + tanh(x) + 1 - exp(x). - _Sergei N. Gladkovskii_, Nov 10 2014 %e A217714 a(0) = 1; %e A217714 a(1) = 1 - 1 = 0; %e A217714 a(2) = -1 - 2 + 1 = -2; %e A217714 a(3) = 2 - 3 - 3 + 1 = -3; %e A217714 a(4) = 5 + 8 - 6 - 4 + 1 = 4; %e A217714 a(5) = -16 + 25 + 20 - 10 - 5 + 1 = 15; %e A217714 a(6) = -61 - 96 + 75 + 40 - 15 - 6 + 1 = -62; %e A217714 a(7) = 272 - 427 - 336 + 175 + 70 - 21 - 7 + 1 = -273; - _Philippe Deléham_, Oct 27 2013 %e A217714 G.f. = 1 - 2*x^2 - 3*x^3 + 4*x^4 + 15*x^5 - 62*x^6 - 273*x^7 + ... %t A217714 a[n_] := 2^n* EulerE[n, 1] + EulerE[n] - 1; Table[a[n], {n, 0, 26}] (* _Jean-François Alcover_, Mar 21 2013 *) %Y A217714 Cf. A000111, A163982. %K A217714 sign %O A217714 0,3 %A A217714 _Paul Curtz_, Mar 21 2013 %E A217714 More terms from _Jean-François Alcover_, Mar 21 2013