This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A217763 #15 Apr 12 2013 12:35:12 %S A217763 1,3,12,12,90,120,70,600,1800,1200,465,4725,19530,31500,12600,3507, %T A217763 42168,211680,529200,529200,141120,30016,414288,2451456,7902720, %U A217763 13124160,8890560,1693440,286884,4460760,30413880,117573120,266716800,312439680,152409600,21772800 %N A217763 Triangular array read by rows: T(n,k) is the number of simple labeled graphs on n nodes with unicyclic components having exactly k nodes with degree 1; n>=3, 0<=k<=n-3. %C A217763 Column k=0 is A001205. %C A217763 Row sums are A137916. %F A217763 exp(A(B(x,y)), where A(x) is e.g.f. for A137916 and B(x,y) is e.g.f. for A055302, gives T(n,n-k) (offset). %e A217763 ....o-o..........o-o...... %e A217763 ....| |..........|\ ...... %e A217763 ....o-o..........o-o...... %e A217763 T(4,0)=3 because the graph on the left has 4 nodes and 0 nodes with degree 1. It has 3 labelings. %e A217763 T(4,1)=12 because the graph on the right has 4 nodes and 1 node with degree 1. It has 12 labelings. %e A217763 1, %e A217763 3, 12, %e A217763 12, 90, 120, %e A217763 70, 600, 1800, 1200, %e A217763 465, 4725, 19530, 31500, 12600, %e A217763 3507, 42168, 211680, 529200, 529200, 141120, %e A217763 30016, 414288, 2451456, 7902720, 13124160, 8890560, 1693440. %t A217763 nn=10;f[list_]:=Select[list,#>0&];t=Sum[Sum[n!/k! StirlingS2[n-1,n-k]y^k x^n/n!,{k,1,n}],{n,0,nn}];Map[Reverse,Map[f,Drop[Range[0,nn]!CoefficientList[Series[ Exp[Log[1/(1-t)]/2-t/2-t^2/4],{x,0,nn}],{x,y}],3]]]//Grid %K A217763 nonn,tabl %O A217763 3,2 %A A217763 _Geoffrey Critzer_, Mar 23 2013