This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A217769 #53 Oct 30 2023 07:29:49 %S A217769 6,3,5,7,22,11,13,27,17,19,46,23,124,58,29,31,250,57,37,55,41,43,94, %T A217769 47,1264,106,53,87,118,59,61,85,134,67,142,71,73,712,158,79,166,83, %U A217769 405,115,89,141,406,119,97,202,101,103,214,107,109,145,113,177,418,143 %N A217769 Least number k > n such that sigma(k) = 2*(k-n), or 0 if no such k exists. %C A217769 a(0) = 6 corresponds to the smallest perfect number. %C A217769 Is n = 144 the first number for which a(n) = 0? - _T. D. Noe_, Mar 28 2013 %C A217769 No, a(144) = 95501968. - _Giovanni Resta_, Mar 28 2013 %C A217769 We can instead compute k - sigma(k)/2 for increasing k, which is computationally much faster. In this case, we stop computing when all n have been found for a range of numbers. - _T. D. Noe_, Mar 28 2013 %C A217769 Also, the first number whose deficiency is 2n. This is the even bisection of A082730. Hence, the first number in the following sequences: A000396, A191363, A125246, A141548, A125247, A101223, A141549, A141550, A125248, A223608, A223607, A223606. - _T. D. Noe_, Mar 29 2013 %C A217769 10^12 < a(654) <= 618970019665683124609613824. - _Donovan Johnson_, Jan 04 2014 %H A217769 Donovan Johnson, <a href="/A217769/b217769.txt">Table of n, a(n) for n = 0..653</a> (first 241 terms from T. D. Noe) %H A217769 Nichole Davis, Dominic Klyve and Nicole Kraght, <a href="http://dx.doi.org/10.2140/involve.2013.6.493">On the difference between an integer and the sum of its proper divisors</a>, Involve, Vol. 6 (2013), No. 4, 493-504; DOI: 10.2140/involve.2013.6.493. %e A217769 a(4)=22, since 22 is the least number such that sigma(22)=36=2*(22-4). %t A217769 Table[Min[Select[Range[2000], DivisorSigma[1, #] == 2*(# - i) &]], {i, 0, 60}] %t A217769 nn = 144; t = Table[0, {nn}]; k = 0; While[k++; Times @@ t == 0, s = (2*k - DivisorSigma[1, k])/2; If[s >= 0 && s < nn && IntegerQ[s] && t[[s + 1]] == 0, t[[s + 1]] = k]]; t (* _T. D. Noe_, Mar 28 2013 *) %Y A217769 Cf. A000203, A000396. %Y A217769 Cf. A087998 (negative n). %K A217769 nonn %O A217769 0,1 %A A217769 _Jayanta Basu_, Mar 28 2013