cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A217770 Square array T, read by antidiagonals: T(n,k) = 0 if n-k >=4 or if k-n >= 6, T(3,0) = T(2,0) = T(1,0) = T(0,0) = T(0,1) = T(0,2) = T(0,3) = T(0,4) = T(0,5) = 1, T(n,k) = T(n-1,k) + T(n,k-1).

This page as a plain text file.
%I A217770 #16 Apr 05 2013 12:27:01
%S A217770 1,1,1,1,2,1,1,3,3,1,1,4,6,4,0,1,5,10,10,4,0,0,6,15,20,14,0,0,0,6,21,
%T A217770 35,34,14,0,0,0,0,27,56,69,48,0,0,0,0,0,27,83,125,117,48,0,0,0,0,0,0,
%U A217770 110,208,242,165,0,0,0,0,0,0,0,110,318,450,407,165
%N A217770 Square array T, read by antidiagonals: T(n,k) = 0 if n-k >=4 or if k-n >= 6, T(3,0) = T(2,0) = T(1,0) = T(0,0) = T(0,1) = T(0,2) = T(0,3) = T(0,4) = T(0,5) = 1, T(n,k) = T(n-1,k) + T(n,k-1).
%C A217770 A hexagon arithmetic of E. Lucas.
%F A217770 T(n,n+4) = T(n,n+5) = A094788(n+2).
%F A217770 T(n,n+3) = A217783(n).
%F A217770 T(n,n+2) = A217779(n).
%F A217770 T(n,n+1) = A081567(n).
%F A217770 T(n,n)   = A217782(n).
%F A217770 T(n+1,n) = A217778(n).
%F A217770 T(n+3,n) = T(n+2,n) = A094667(n+1).
%F A217770 Sum(T(n-k,k), k=0..n) = A217777(n).
%e A217770 Square array begins:
%e A217770 n=0: 1, 1,  1,  1,   1,   1,   0,   0,    0,    0,    0, 0, ...
%e A217770 n=1: 1, 2,  3,  4,   5,   6,   6,   0,    0,    0,    0, 0, ...
%e A217770 n=2: 1, 3,  6, 10,  15,  21,  27,  27,    0,    0,    0, 0, ...
%e A217770 n=3: 1, 4, 10, 20,  35,  56,  83, 110,  110,    0,    0, 0, ...
%e A217770 n=4: 0, 4, 14, 34,  69, 125, 208, 318,  428,  428,    0, 0, ...
%e A217770 n=5: 0, 0, 14, 48, 117, 242, 450, 768, 1196, 1624, 1624, 0, ...
%e A217770 ...
%e A217770 Square array, read by rows, with 0 omitted:
%e A217770 ...1,    1,     1,     1,     1,      1
%e A217770 ...1,    2,     3,     4,     5,      6,      6
%e A217770 ...1,    3,     6,    10,    15,     21,     27,     27
%e A217770 ...1,    4,    10,    20,    35,     56,     83,    110,    110
%e A217770 ...4,   14,    34,    69,   125,    208,    318,    428,    428
%e A217770 ..14,   48,   117,   242,   450,    768,   1196,   1624,   1624
%e A217770 ..48,  165,   407,   857,  1625,   2821,   4445,   6069,   6069
%e A217770 .165,  572,  1429,  3054,  5875,  10320,  16389,  22458,  22458
%e A217770 .572, 2001,  5055, 10930, 21250,  37639,  60097,  82555,  82555
%e A217770 2001, 7056, 17986, 39236, 76875, 136972, 219527, 302082, 302082
%e A217770 ...
%e A217770 Triangle begins:
%e A217770 1
%e A217770 1, 1
%e A217770 1, 2,  1
%e A217770 1, 3,  3,  1
%e A217770 1, 4,  6,  4,  0
%e A217770 1, 5, 10, 10,  4,  0
%e A217770 0, 6, 15, 20, 14,  0, 0
%e A217770 0, 6, 21, 35, 34, 14, 0, 0
%e A217770 ...
%Y A217770 Cf. Similar sequences: A214846, A216054, A216201, A216210, A216216, A216218, A216219, A216220, A216226, A216228, A216229, A216230, A216232, A216235, A216236, A216238, A217257, A217315, A217593, A217765.
%K A217770 nonn,tabl
%O A217770 0,5
%A A217770 _Philippe Deléham_, Mar 24 2013