This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A217784 #36 Sep 12 2024 15:03:27 %S A217784 16777216,429981696,11019960576,25600000000,68719476736,282429536481, %T A217784 377801998336,656100000000,8916100448256,9682651996416,14048223625216, %U A217784 16815125390625,39062500000000,53459728531456,248155780267521,360040606269696,457163239653376,576480100000000 %N A217784 Triprimes to triprime powers. %C A217784 Triprimes are numbers with exactly three prime factors: A014612. %C A217784 This is to triprimes as primes are to A053810 (Prime powers of prime numbers) and as semiprimes are to A113877 (Semiprimes to semiprime powers). - _Jonathan Vos Post_, Mar 26 2013 %C A217784 a(n) increases roughly as n^8, because 9669 of the first 10000 terms are powers of 8. - _Kevin L. Schwartz_ and _Christian N. K. Anderson_, Jun 05 2013 %H A217784 Chai Wah Wu, <a href="/A217784/b217784.txt">Table of n, a(n) for n = 1..10000</a> terms 1..1000 from Kevin L. Schwartz and Christian N. K. Anderson %e A217784 429981696 = 8^12. %e A217784 a(10) = 9682651996416 = 42^8 = (2*3*7)^(2*2*2). %o A217784 (R) library(gmp); istriprime=function(x) ifelse(as.bigz(x)<8, F, length(factorize(x))==3)as.bigz(which(sapply(1:200, istriprime)))->trp; maxy=tail(trp, 1)^trp[1]; len=0; y=as.bigz(rep(0, 100)) %o A217784 for(i in 1:length(trp)) { j=0; while((n=trp[i]^trp[(j=j+1)])<=maxy) y[(len=len+1)]=n } %o A217784 y[1:len]->y; y[order(as.numeric(y))] %o A217784 -- _Kevin L. Schwartz_ and _Christian N. K. Anderson_, Jun 05 2013 %o A217784 (Python) %o A217784 from math import isqrt %o A217784 from sympy import primepi, primerange, integer_nthroot, factorint %o A217784 def A217784(n): %o A217784 def g(x): return int(sum(primepi(x//(k*m))-b for a, k in enumerate(primerange(integer_nthroot(x, 3)[0]+1)) for b, m in enumerate(primerange(k, isqrt(x//k)+1), a))) %o A217784 def f(x): return int(n+x-sum(g(integer_nthroot(x, k)[0]) for k in range(1,x.bit_length()) if sum(factorint(k).values())==3)) %o A217784 def bisection(f,kmin=0,kmax=1): %o A217784 while f(kmax) > kmax: kmax <<= 1 %o A217784 while kmax-kmin > 1: %o A217784 kmid = kmax+kmin>>1 %o A217784 if f(kmid) <= kmid: %o A217784 kmax = kmid %o A217784 else: %o A217784 kmin = kmid %o A217784 return kmax %o A217784 return bisection(f,n,n) # _Chai Wah Wu_, Sep 12 2024 %Y A217784 Cf. A014612, A053810, A113877, A129539. %K A217784 nonn %O A217784 1,1 %A A217784 _Kevin L. Schwartz_ and _Christian N. K. Anderson_, Mar 24 2013