A217788 Least integer s > p_n such that sum_{k=1}^n p_k*s^(n-k) (the number [p_1,...,p_n] in base s) is prime, where p_k denotes the k-th prime.
3, 4, 8, 9, 16, 15, 72, 37, 30, 54, 54, 54, 80, 91, 78, 204, 182, 110, 286, 183, 158, 231, 228, 105, 252, 189, 198, 119, 178, 252, 280, 152, 164, 423, 170, 185, 190, 249, 1006, 249, 678, 200, 254, 480, 216, 234, 322, 601, 264, 301, 260, 269, 244, 308, 280, 364, 612, 635, 310, 420
Offset: 1
Keywords
Examples
a(3)=8 since 2*8^2+3*8+5=157 is prime but 2*6^2+3*6+5=95 and 2*7^2+3*7+5=124 are not.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..1000
- Zhi-Wei Sun, Problems on irreducible polynomials, a message to Number Theory List, March 24, 2013.
- Zhi-Wei Sun, Primes of the form 1+2*s+...+n*s^{n-1}, a message to Number Theory List, March 24, 2013.
Programs
-
Mathematica
A[n_,x_]:=A[n,x]=Sum[Prime[k]*x^(n-k),{k,1,n}]; Do[Do[If[PrimeQ[A[n,s]]==True, Print[n," ",s]; Goto[aa]], {s,Prime[n]+1, (n+1)(n+2)}]; Print[n," ",counterexample]; Label[aa]; Continue, {n,1,100}]
Extensions
Edited and added additional information by Zhi-Wei Sun, Mar 31 2013
Comments