This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A217791 #30 Jan 24 2023 15:30:34 %S A217791 180,12000,30996,47940,66780,102816,128040,234300,494088,712272, %T A217791 1133088,1408212,1623072,1692768,1896336,1925196,2024760,2388720, %U A217791 2529090,2836008,3423120,3724320,3822360,4628760,4750920,7219608,7359912,7603488,7749060 %N A217791 Numbers k such that sigma(k) = 3*sigma(k+1). %H A217791 Donovan Johnson, <a href="/A217791/b217791.txt">Table of n, a(n) for n = 1..500</a> %e A217791 47940 is in the sequence because sigma(47940)=145152, sigma(47941)=48384, and 145152=3*48384. %e A217791 7749060 is in the sequence because sigma(7749060)=24192000, sigma(7749061)=8064000, and 24192000=3*8064000. %p A217791 A217791:=proc(q) local n; %p A217791 for n from 1 to q do if sigma(n)=3*sigma(n+1) then print(n); fi; od; end: %p A217791 A217791(10^10); %t A217791 Position[Partition[DivisorSigma[1,Range[78*10^5]],2,1],_?(#[[1]] == 3#[[2]]&), {1},Heads->False]//Flatten (* _Harvey P. Dale_, Oct 17 2016 *) %o A217791 (Magma) [n: n in [1..10^7] | SumOfDivisors(n) eq 3*SumOfDivisors(n+1)]; // _Bruno Berselli_, Mar 25 2013 %Y A217791 Cf. A000203, A002961, A058073, A067081, A077087, A163193, A272027 (3*sigma(n)). %K A217791 nonn %O A217791 1,1 %A A217791 _Paolo P. Lava_, Mar 25 2013 %E A217791 More terms from _Bruno Berselli_, Mar 25 2013