This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A217793 #12 Feb 16 2025 08:33:18 %S A217793 0,7,13,0,11,24,34,41,0,15,32,44,58,74,85,0,23,48,75,93,113,135,159, %T A217793 185,202,221,0,27,56,87,107,142,166,192,220,237,269,290,313,0,35,72, %U A217793 111,152,178,206,253,285,319,355,376,416,458,485,514,545,0,39,80 %N A217793 Erdős-Turán Golomb rulers, triangle read by rows. %H A217793 Reinhard Zumkeller, <a href="/A217793/b217793.txt">Rows n = 1..60 of triangle, flattened</a> %H A217793 P. Erdős and P. Turán, <a href="http://www.renyi.hu/~p_erdos/1941-01.pdf">On a problem of Sidon in additive number theory, and on some related problems</a>, J. Lond. Math. Soc. 16 (1941), 212-215. %H A217793 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GolombRuler.html">Golomb Ruler.</a> %H A217793 Wikipedia, <a href="http://en.wikipedia.org/wiki/Golomb_ruler">Golomb ruler</a> %H A217793 <a href="/index/Go#Golomb">Index entries for sequences related to Golomb rulers</a> %F A217793 T(n,k) = 2*p*k + k^2 mod p with p = n-th odd prime and 0 <= k < p. %e A217793 First rows: %e A217793 . 1 0,7,13 %e A217793 . 2 0,11,24,34,41 %e A217793 . 3 0,15,32,44,58,74,85 %e A217793 . 4 0,23,48,75,93,113,135,159,185,202,221 %e A217793 . 5 0,27,56,87,107,142,166,192,220,237,269,290,313 %e A217793 . 6 0,35,72,111,152,178,206,253,285,319,355,376,416,458,485,514,545 . %o A217793 (Haskell) %o A217793 a217793 n k = a217793_tabf !! (n-1) !! k %o A217793 a217793_row n = a217793_tabf !! (n-1) %o A217793 a217793_tabf = %o A217793 map (\p -> [2*p*k + k^2 `mod` p | k <- [0..p-1]]) a065091_list %Y A217793 Cf. A065091 (row lengths). %K A217793 nonn,tabf %O A217793 1,2 %A A217793 _Reinhard Zumkeller_, Mar 25 2013